|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import inspect | 
					
						
						|  | import math | 
					
						
						|  | from typing import Any, Callable, Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | from ...models import AutoencoderKL, UNet2DConditionModel | 
					
						
						|  | from ...schedulers import KarrasDiffusionSchedulers | 
					
						
						|  | from ...utils import is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring | 
					
						
						|  | from ..pipeline_utils import DiffusionPipeline | 
					
						
						|  | from . import StableDiffusionPipelineOutput | 
					
						
						|  | from .safety_checker import StableDiffusionSafetyChecker | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ```py | 
					
						
						|  | >>> import torch | 
					
						
						|  | >>> from diffusers import StableDiffusionSAGPipeline | 
					
						
						|  |  | 
					
						
						|  | >>> pipe = StableDiffusionSAGPipeline.from_pretrained( | 
					
						
						|  | ...     "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 | 
					
						
						|  | ... ) | 
					
						
						|  | >>> pipe = pipe.to("cuda") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "a photo of an astronaut riding a horse on mars" | 
					
						
						|  | >>> image = pipe(prompt, sag_scale=0.75).images[0] | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CrossAttnStoreProcessor: | 
					
						
						|  | def __init__(self): | 
					
						
						|  | self.attention_probs = None | 
					
						
						|  |  | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | attn, | 
					
						
						|  | hidden_states, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | ): | 
					
						
						|  | batch_size, sequence_length, _ = hidden_states.shape | 
					
						
						|  | attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | 
					
						
						|  | query = attn.to_q(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if encoder_hidden_states is None: | 
					
						
						|  | encoder_hidden_states = hidden_states | 
					
						
						|  | elif attn.cross_attention_norm: | 
					
						
						|  | encoder_hidden_states = attn.norm_cross(encoder_hidden_states) | 
					
						
						|  |  | 
					
						
						|  | key = attn.to_k(encoder_hidden_states) | 
					
						
						|  | value = attn.to_v(encoder_hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query = attn.head_to_batch_dim(query) | 
					
						
						|  | key = attn.head_to_batch_dim(key) | 
					
						
						|  | value = attn.head_to_batch_dim(value) | 
					
						
						|  |  | 
					
						
						|  | self.attention_probs = attn.get_attention_scores(query, key, attention_mask) | 
					
						
						|  | hidden_states = torch.bmm(self.attention_probs, value) | 
					
						
						|  | hidden_states = attn.batch_to_head_dim(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = attn.to_out[0](hidden_states) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = attn.to_out[1](hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class StableDiffusionSAGPipeline(DiffusionPipeline): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for text-to-image generation using Stable Diffusion. | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
						
						|  | text_encoder ([`CLIPTextModel`]): | 
					
						
						|  | Frozen text-encoder. Stable Diffusion uses the text portion of | 
					
						
						|  | [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | 
					
						
						|  | the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | 
					
						
						|  | tokenizer (`CLIPTokenizer`): | 
					
						
						|  | Tokenizer of class | 
					
						
						|  | [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
						
						|  | unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
						
						|  | [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
						
						|  | safety_checker ([`StableDiffusionSafetyChecker`]): | 
					
						
						|  | Classification module that estimates whether generated images could be considered offensive or harmful. | 
					
						
						|  | Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | 
					
						
						|  | feature_extractor ([`CLIPFeatureExtractor`]): | 
					
						
						|  | Model that extracts features from generated images to be used as inputs for the `safety_checker`. | 
					
						
						|  | """ | 
					
						
						|  | _optional_components = ["safety_checker", "feature_extractor"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vae: AutoencoderKL, | 
					
						
						|  | text_encoder: CLIPTextModel, | 
					
						
						|  | tokenizer: CLIPTokenizer, | 
					
						
						|  | unet: UNet2DConditionModel, | 
					
						
						|  | scheduler: KarrasDiffusionSchedulers, | 
					
						
						|  | safety_checker: StableDiffusionSafetyChecker, | 
					
						
						|  | feature_extractor: CLIPFeatureExtractor, | 
					
						
						|  | requires_safety_checker: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | vae=vae, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | unet=unet, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | safety_checker=safety_checker, | 
					
						
						|  | feature_extractor=feature_extractor, | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
						
						|  | self.register_to_config(requires_safety_checker=requires_safety_checker) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def enable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Enable sliced VAE decoding. | 
					
						
						|  |  | 
					
						
						|  | When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | 
					
						
						|  | steps. This is useful to save some memory and allow larger batch sizes. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.enable_slicing() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def disable_vae_slicing(self): | 
					
						
						|  | r""" | 
					
						
						|  | Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | 
					
						
						|  | computing decoding in one step. | 
					
						
						|  | """ | 
					
						
						|  | self.vae.disable_slicing() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def enable_sequential_cpu_offload(self, gpu_id=0): | 
					
						
						|  | r""" | 
					
						
						|  | Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | 
					
						
						|  | text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | 
					
						
						|  | `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | 
					
						
						|  | Note that offloading happens on a submodule basis. Memory savings are higher than with | 
					
						
						|  | `enable_model_cpu_offload`, but performance is lower. | 
					
						
						|  | """ | 
					
						
						|  | if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): | 
					
						
						|  | from accelerate import cpu_offload | 
					
						
						|  | else: | 
					
						
						|  | raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") | 
					
						
						|  |  | 
					
						
						|  | device = torch.device(f"cuda:{gpu_id}") | 
					
						
						|  |  | 
					
						
						|  | if self.device.type != "cpu": | 
					
						
						|  | self.to("cpu", silence_dtype_warnings=True) | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | 
					
						
						|  | cpu_offload(cpu_offloaded_model, device) | 
					
						
						|  |  | 
					
						
						|  | if self.safety_checker is not None: | 
					
						
						|  | cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  |  | 
					
						
						|  | def _execution_device(self): | 
					
						
						|  | r""" | 
					
						
						|  | Returns the device on which the pipeline's models will be executed. After calling | 
					
						
						|  | `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | 
					
						
						|  | hooks. | 
					
						
						|  | """ | 
					
						
						|  | if not hasattr(self.unet, "_hf_hook"): | 
					
						
						|  | return self.device | 
					
						
						|  | for module in self.unet.modules(): | 
					
						
						|  | if ( | 
					
						
						|  | hasattr(module, "_hf_hook") | 
					
						
						|  | and hasattr(module._hf_hook, "execution_device") | 
					
						
						|  | and module._hf_hook.execution_device is not None | 
					
						
						|  | ): | 
					
						
						|  | return torch.device(module._hf_hook.execution_device) | 
					
						
						|  | return self.device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | device: (`torch.device`): | 
					
						
						|  | torch device | 
					
						
						|  | num_images_per_prompt (`int`): | 
					
						
						|  | number of images that should be generated per prompt | 
					
						
						|  | do_classifier_free_guidance (`bool`): | 
					
						
						|  | whether to use classifier free guidance or not | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | 
					
						
						|  | Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | """ | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=self.tokenizer.model_max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
						
						|  | text_input_ids, untruncated_ids | 
					
						
						|  | ): | 
					
						
						|  | removed_text = self.tokenizer.batch_decode( | 
					
						
						|  | untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | 
					
						
						|  | ) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
						
						|  | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = text_inputs.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self.text_encoder( | 
					
						
						|  | text_input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | prompt_embeds = prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | bs_embed, seq_len, _ = prompt_embeds.shape | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
						
						|  | uncond_tokens: List[str] | 
					
						
						|  | if negative_prompt is None: | 
					
						
						|  | uncond_tokens = [""] * batch_size | 
					
						
						|  | elif type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(negative_prompt, str): | 
					
						
						|  | uncond_tokens = [negative_prompt] | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | uncond_tokens = negative_prompt | 
					
						
						|  |  | 
					
						
						|  | max_length = prompt_embeds.shape[1] | 
					
						
						|  | uncond_input = self.tokenizer( | 
					
						
						|  | uncond_tokens, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
						
						|  | attention_mask = uncond_input.attention_mask.to(device) | 
					
						
						|  | else: | 
					
						
						|  | attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = self.text_encoder( | 
					
						
						|  | uncond_input.input_ids.to(device), | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds[0] | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | seq_len = negative_prompt_embeds.shape[1] | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
						
						|  | negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def run_safety_checker(self, image, device, dtype): | 
					
						
						|  | if self.safety_checker is not None: | 
					
						
						|  | safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) | 
					
						
						|  | image, has_nsfw_concept = self.safety_checker( | 
					
						
						|  | images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | has_nsfw_concept = None | 
					
						
						|  | return image, has_nsfw_concept | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def decode_latents(self, latents): | 
					
						
						|  | latents = 1 / self.vae.config.scaling_factor * latents | 
					
						
						|  | image = self.vae.decode(latents).sample | 
					
						
						|  | image = (image / 2 + 0.5).clamp(0, 1) | 
					
						
						|  |  | 
					
						
						|  | image = image.cpu().permute(0, 2, 3, 1).float().numpy() | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_extra_step_kwargs(self, generator, eta): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | extra_step_kwargs = {} | 
					
						
						|  | if accepts_eta: | 
					
						
						|  | extra_step_kwargs["eta"] = eta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | if accepts_generator: | 
					
						
						|  | extra_step_kwargs["generator"] = generator | 
					
						
						|  | return extra_step_kwargs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_inputs( | 
					
						
						|  | self, | 
					
						
						|  | prompt, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | callback_steps, | 
					
						
						|  | negative_prompt=None, | 
					
						
						|  | prompt_embeds=None, | 
					
						
						|  | negative_prompt_embeds=None, | 
					
						
						|  | ): | 
					
						
						|  | if height % 8 != 0 or width % 8 != 0: | 
					
						
						|  | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
						
						|  |  | 
					
						
						|  | if (callback_steps is None) or ( | 
					
						
						|  | callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
						
						|  | f" {type(callback_steps)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is None and prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
						
						|  | if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
						
						|  | f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
						
						|  | f" {negative_prompt_embeds.shape}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | 
					
						
						|  | shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if latents is None: | 
					
						
						|  | latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  | else: | 
					
						
						|  | latents = latents.to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = latents * self.scheduler.init_noise_sigma | 
					
						
						|  | return latents | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | height: Optional[int] = None, | 
					
						
						|  | width: Optional[int] = None, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | guidance_scale: float = 7.5, | 
					
						
						|  | sag_scale: float = 0.75, | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | num_images_per_prompt: Optional[int] = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_type: Optional[str] = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | 
					
						
						|  | callback_steps: Optional[int] = 1, | 
					
						
						|  | cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Function invoked when calling the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | 
					
						
						|  | instead. | 
					
						
						|  | height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
						
						|  | The height in pixels of the generated image. | 
					
						
						|  | width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
						
						|  | The width in pixels of the generated image. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
						
						|  | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
						
						|  | `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
						
						|  | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
						
						|  | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
						
						|  | usually at the expense of lower image quality. | 
					
						
						|  | sag_scale (`float`, *optional*, defaults to 0.75): | 
					
						
						|  | SAG scale as defined in [Improving Sample Quality of Diffusion Models Using Self-Attention Guidance] | 
					
						
						|  | (https://arxiv.org/abs/2210.00939). `sag_scale` is defined as `s_s` of equation (24) of SAG paper: | 
					
						
						|  | https://arxiv.org/pdf/2210.00939.pdf. Typically chosen between [0, 1.0] for better quality. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | 
					
						
						|  | Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | 
					
						
						|  | num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of images to generate per prompt. | 
					
						
						|  | eta (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
						
						|  | [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | 
					
						
						|  | to make generation deterministic. | 
					
						
						|  | latents (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor will ge generated by sampling using the supplied random `generator`. | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generate image. Choose between | 
					
						
						|  | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
						
						|  | plain tuple. | 
					
						
						|  | callback (`Callable`, *optional*): | 
					
						
						|  | A function that will be called every `callback_steps` steps during inference. The function will be | 
					
						
						|  | called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | 
					
						
						|  | callback_steps (`int`, *optional*, defaults to 1): | 
					
						
						|  | The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
						
						|  | called at every step. | 
					
						
						|  | cross_attention_kwargs (`dict`, *optional*): | 
					
						
						|  | A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under | 
					
						
						|  | `self.processor` in | 
					
						
						|  | [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
						
						|  | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | 
					
						
						|  | When returning a tuple, the first element is a list with the generated images, and the second element is a | 
					
						
						|  | list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | 
					
						
						|  | (nsfw) content, according to the `safety_checker`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | height = height or self.unet.config.sample_size * self.vae_scale_factor | 
					
						
						|  | width = width or self.unet.config.sample_size * self.vae_scale_factor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs( | 
					
						
						|  | prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = guidance_scale > 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_self_attention_guidance = sag_scale > 0.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self._encode_prompt( | 
					
						
						|  | prompt, | 
					
						
						|  | device, | 
					
						
						|  | num_images_per_prompt, | 
					
						
						|  | do_classifier_free_guidance, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scheduler.set_timesteps(num_inference_steps, device=device) | 
					
						
						|  | timesteps = self.scheduler.timesteps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_channels_latents = self.unet.in_channels | 
					
						
						|  | latents = self.prepare_latents( | 
					
						
						|  | batch_size * num_images_per_prompt, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | store_processor = CrossAttnStoreProcessor() | 
					
						
						|  | self.unet.mid_block.attentions[0].transformer_blocks[0].attn1.processor = store_processor | 
					
						
						|  | num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.unet( | 
					
						
						|  | latent_model_input, | 
					
						
						|  | t, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | cross_attention_kwargs=cross_attention_kwargs, | 
					
						
						|  | ).sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_self_attention_guidance: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  |  | 
					
						
						|  | pred_x0 = self.pred_x0(latents, noise_pred_uncond, t) | 
					
						
						|  |  | 
					
						
						|  | uncond_attn, cond_attn = store_processor.attention_probs.chunk(2) | 
					
						
						|  |  | 
					
						
						|  | degraded_latents = self.sag_masking( | 
					
						
						|  | pred_x0, uncond_attn, t, self.pred_epsilon(latents, noise_pred_uncond, t) | 
					
						
						|  | ) | 
					
						
						|  | uncond_emb, _ = prompt_embeds.chunk(2) | 
					
						
						|  |  | 
					
						
						|  | degraded_pred = self.unet(degraded_latents, t, encoder_hidden_states=uncond_emb).sample | 
					
						
						|  | noise_pred += sag_scale * (noise_pred_uncond - degraded_pred) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | pred_x0 = self.pred_x0(latents, noise_pred, t) | 
					
						
						|  |  | 
					
						
						|  | cond_attn = store_processor.attention_probs | 
					
						
						|  |  | 
					
						
						|  | degraded_latents = self.sag_masking( | 
					
						
						|  | pred_x0, cond_attn, t, self.pred_epsilon(latents, noise_pred, t) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | degraded_pred = self.unet(degraded_latents, t, encoder_hidden_states=prompt_embeds).sample | 
					
						
						|  | noise_pred += sag_scale * (noise_pred - degraded_pred) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  | if callback is not None and i % callback_steps == 0: | 
					
						
						|  | callback(i, t, latents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = self.decode_latents(latents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_type == "pil": | 
					
						
						|  | image = self.numpy_to_pil(image) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (image, has_nsfw_concept) | 
					
						
						|  |  | 
					
						
						|  | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | 
					
						
						|  |  | 
					
						
						|  | def sag_masking(self, original_latents, attn_map, t, eps): | 
					
						
						|  |  | 
					
						
						|  | bh, hw1, hw2 = attn_map.shape | 
					
						
						|  | b, latent_channel, latent_h, latent_w = original_latents.shape | 
					
						
						|  | h = self.unet.attention_head_dim | 
					
						
						|  | if isinstance(h, list): | 
					
						
						|  | h = h[-1] | 
					
						
						|  | map_size = math.isqrt(hw1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_map = attn_map.reshape(b, h, hw1, hw2) | 
					
						
						|  | attn_mask = attn_map.mean(1, keepdim=False).sum(1, keepdim=False) > 1.0 | 
					
						
						|  | attn_mask = ( | 
					
						
						|  | attn_mask.reshape(b, map_size, map_size).unsqueeze(1).repeat(1, latent_channel, 1, 1).type(attn_map.dtype) | 
					
						
						|  | ) | 
					
						
						|  | attn_mask = F.interpolate(attn_mask, (latent_h, latent_w)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | degraded_latents = gaussian_blur_2d(original_latents, kernel_size=9, sigma=1.0) | 
					
						
						|  | degraded_latents = degraded_latents * attn_mask + original_latents * (1 - attn_mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | degraded_latents = self.scheduler.add_noise(degraded_latents, noise=eps, timesteps=t) | 
					
						
						|  |  | 
					
						
						|  | return degraded_latents | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def pred_x0(self, sample, model_output, timestep): | 
					
						
						|  | alpha_prod_t = self.scheduler.alphas_cumprod[timestep] | 
					
						
						|  |  | 
					
						
						|  | beta_prod_t = 1 - alpha_prod_t | 
					
						
						|  | if self.scheduler.config.prediction_type == "epsilon": | 
					
						
						|  | pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | 
					
						
						|  | elif self.scheduler.config.prediction_type == "sample": | 
					
						
						|  | pred_original_sample = model_output | 
					
						
						|  | elif self.scheduler.config.prediction_type == "v_prediction": | 
					
						
						|  | pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | 
					
						
						|  |  | 
					
						
						|  | model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"prediction_type given as {self.scheduler.config.prediction_type} must be one of `epsilon`, `sample`," | 
					
						
						|  | " or `v_prediction`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return pred_original_sample | 
					
						
						|  |  | 
					
						
						|  | def pred_epsilon(self, sample, model_output, timestep): | 
					
						
						|  | alpha_prod_t = self.scheduler.alphas_cumprod[timestep] | 
					
						
						|  |  | 
					
						
						|  | beta_prod_t = 1 - alpha_prod_t | 
					
						
						|  | if self.scheduler.config.prediction_type == "epsilon": | 
					
						
						|  | pred_eps = model_output | 
					
						
						|  | elif self.scheduler.config.prediction_type == "sample": | 
					
						
						|  | pred_eps = (sample - (alpha_prod_t**0.5) * model_output) / (beta_prod_t**0.5) | 
					
						
						|  | elif self.scheduler.config.prediction_type == "v_prediction": | 
					
						
						|  | pred_eps = (beta_prod_t**0.5) * sample + (alpha_prod_t**0.5) * model_output | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"prediction_type given as {self.scheduler.config.prediction_type} must be one of `epsilon`, `sample`," | 
					
						
						|  | " or `v_prediction`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return pred_eps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def gaussian_blur_2d(img, kernel_size, sigma): | 
					
						
						|  | ksize_half = (kernel_size - 1) * 0.5 | 
					
						
						|  |  | 
					
						
						|  | x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size) | 
					
						
						|  |  | 
					
						
						|  | pdf = torch.exp(-0.5 * (x / sigma).pow(2)) | 
					
						
						|  |  | 
					
						
						|  | x_kernel = pdf / pdf.sum() | 
					
						
						|  | x_kernel = x_kernel.to(device=img.device, dtype=img.dtype) | 
					
						
						|  |  | 
					
						
						|  | kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :]) | 
					
						
						|  | kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1]) | 
					
						
						|  |  | 
					
						
						|  | padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2] | 
					
						
						|  |  | 
					
						
						|  | img = F.pad(img, padding, mode="reflect") | 
					
						
						|  | img = F.conv2d(img, kernel2d, groups=img.shape[-3]) | 
					
						
						|  |  | 
					
						
						|  | return img | 
					
						
						|  |  |