CoDi / app.py
MKFMIKU's picture
Update app.py
74f4637 verified
import gradio as gr
import jax
import numpy as np
import jax.numpy as jnp
from flax.training import checkpoints
from diffusers import FlaxControlNetModel, FlaxUNet2DConditionModel, FlaxAutoencoderKL, FlaxDDIMScheduler
from codi.controlnet_flax import FlaxControlNetModel
from codi.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
from transformers import CLIPTokenizer, FlaxCLIPTextModel
from flax.training.common_utils import shard
from flax.jax_utils import replicate
MODEL_NAME = "CompVis/stable-diffusion-v1-4"
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
MODEL_NAME,
subfolder="unet",
revision="flax",
dtype=jnp.float32,
)
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
MODEL_NAME,
subfolder="vae",
revision="flax",
dtype=jnp.float32,
)
text_encoder = FlaxCLIPTextModel.from_pretrained(
MODEL_NAME,
subfolder="text_encoder",
revision="flax",
dtype=jnp.float32,
)
tokenizer = CLIPTokenizer.from_pretrained(
MODEL_NAME,
subfolder="tokenizer",
revision="flax",
dtype=jnp.float32,
)
controlnet = FlaxControlNetModel(
in_channels=unet.config.in_channels,
down_block_types=unet.config.down_block_types,
only_cross_attention=unet.config.only_cross_attention,
block_out_channels=unet.config.block_out_channels,
layers_per_block=unet.config.layers_per_block,
attention_head_dim=unet.config.attention_head_dim,
cross_attention_dim=unet.config.cross_attention_dim,
use_linear_projection=unet.config.use_linear_projection,
flip_sin_to_cos=unet.config.flip_sin_to_cos,
freq_shift=unet.config.freq_shift,
)
scheduler = FlaxDDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
trained_betas=None,
set_alpha_to_one=True,
steps_offset=0,
)
scheduler_state = scheduler.create_state()
pipeline = FlaxStableDiffusionControlNetPipeline(
vae,
text_encoder,
tokenizer,
unet,
controlnet,
scheduler,
None,
None,
dtype=jnp.float32,
)
controlnet_params = checkpoints.restore_checkpoint("checkpoint_100000.orbax", target=None)
pipeline_params = {
"vae": vae_params,
"unet": unet_params,
"text_encoder": text_encoder.params,
"scheduler": scheduler_state,
"controlnet": controlnet_params,
}
pipeline_params = replicate(pipeline_params)
def infer(seed, prompt, negative_prompt, steps, cfgr):
rng = jax.random.PRNGKey(int(seed))
num_samples = jax.device_count()
rng = jax.random.split(rng, num_samples)
prompt_ids = pipeline.prepare_text_inputs([prompt] * num_samples)
negative_prompt_ids = pipeline.prepare_text_inputs([negative_prompt] * num_samples)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
output = pipeline(
prompt_ids=prompt_ids,
image=None,
params=pipeline_params,
prng_seed=rng,
num_inference_steps=int(steps),
guidance_scale=float(cfgr),
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
output_images = pipeline.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
return output_images
with gr.Blocks(theme='gradio/soft') as demo:
gr.Markdown("## CoDi: Conditional Diffusion Distillation for Higher-Fidelity and Faster Image Generation")
gr.Markdown("[\[Paper\]](https://arxiv.org/abs/2310.01407) [\[Project Page\]](https://fast-codi.github.io) [\[Code\]](https://github.com/fast-codi/CoDi)")
with gr.Tab("CoDi on Text-to-Image"):
with gr.Row():
gr.Radio(["CompVis/stable-diffusion-v1-4"], value="CompVis/stable-diffusion-v1-4", label="baseline model", info="Chose the undistilled baseline model")
gr.Radio(["CoDi/text-to-image-v0-1 (366M)"], value="CoDi/text-to-image-v0-1 (366M)", label="distilled codi", info="Chose the distilled conditional model")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt", value="monochrome, lowres, bad anatomy, worst quality, low quality")
seed = gr.Number(label="Seed", value=0)
output = gr.Gallery(label="Output Images")
with gr.Row():
num_inference_steps = gr.Slider(2, 50, value=4, step=1, label="Steps")
guidance_scale = gr.Slider(2.0, 14.0, value=7.5, step=0.5, label='Guidance Scale')
submit_btn = gr.Button(value = "Submit")
inputs = [
seed,
prompt_input,
negative_prompt,
num_inference_steps,
guidance_scale
]
submit_btn.click(fn=infer, inputs=inputs, outputs=[output])
with gr.Row():
gr.Examples(
examples=["oranges", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"],
inputs=prompt_input,
fn=infer
)
demo.launch()