TraceMind / components /thought_graph.py
kshitijthakkar's picture
fix: Convert cost to float before formatting in thought graph
788f67c
raw
history blame
13.5 kB
"""
Thought Graph Visualization Component
Visualizes agent reasoning flow as an interactive network graph
"""
import plotly.graph_objects as go
import networkx as nx
from typing import List, Dict, Any, Tuple
import colorsys
def create_thought_graph(spans: List[Dict[str, Any]], trace_id: str = "Unknown") -> go.Figure:
"""
Create an interactive thought graph showing agent reasoning flow
This is different from the waterfall chart - it shows the logical flow
of the agent's thinking process (LLM calls, Tool calls, etc.) as a
directed graph rather than a timeline.
Args:
spans: List of OpenTelemetry span dictionaries
trace_id: Trace identifier
Returns:
Plotly figure with interactive network graph
"""
# Ensure spans is a list
if hasattr(spans, 'tolist'):
spans = spans.tolist()
elif not isinstance(spans, list):
spans = list(spans) if spans is not None else []
if not spans:
# Return empty figure with message
fig = go.Figure()
fig.add_annotation(
text="No reasoning steps to display",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False,
font=dict(size=20)
)
return fig
# Build graph from spans
G = nx.DiGraph()
# First pass: Add all nodes and build span_map
span_map = {}
for span in spans:
span_id = span.get('spanId') or span.get('span_id') or span.get('spanID')
if not span_id:
continue
# Get span details
name = span.get('name', 'Unknown')
kind = span.get('kind', 'INTERNAL')
attributes = span.get('attributes', {})
# Check for OpenInference span kind
if isinstance(attributes, dict) and 'openinference.span.kind' in attributes:
openinference_kind = attributes.get('openinference.span.kind', kind)
if openinference_kind: # Only call .upper() if not None
kind = openinference_kind.upper()
# Extract metadata for node
node_data = {
'span_id': span_id,
'name': name,
'kind': kind,
'attributes': attributes,
'status': span.get('status', {}).get('code', 'OK')
}
# Add token and cost info if available
if isinstance(attributes, dict):
# Token info
if 'gen_ai.usage.prompt_tokens' in attributes:
node_data['prompt_tokens'] = attributes['gen_ai.usage.prompt_tokens']
if 'gen_ai.usage.completion_tokens' in attributes:
node_data['completion_tokens'] = attributes['gen_ai.usage.completion_tokens']
# Cost info
if 'gen_ai.usage.cost.total' in attributes:
node_data['cost'] = attributes['gen_ai.usage.cost.total']
elif 'llm.usage.cost' in attributes:
node_data['cost'] = attributes['llm.usage.cost']
# Model info
if 'gen_ai.request.model' in attributes:
node_data['model'] = attributes['gen_ai.request.model']
elif 'llm.model' in attributes:
node_data['model'] = attributes['llm.model']
# Tool info
if 'tool.name' in attributes:
node_data['tool_name'] = attributes['tool.name']
# Add node to graph
G.add_node(span_id, **node_data)
span_map[span_id] = span
# Second pass: Add all edges (now all nodes exist in span_map)
for span in spans:
span_id = span.get('spanId') or span.get('span_id') or span.get('spanID')
if not span_id:
continue
parent_id = span.get('parentSpanId') or span.get('parent_span_id') or span.get('parentSpanID')
if parent_id and parent_id in span_map:
G.add_edge(parent_id, span_id)
print(f"[DEBUG] Added edge: {parent_id}{span_id}")
print(f"[DEBUG] Graph created: {G.number_of_nodes()} nodes, {G.number_of_edges()} edges")
if G.number_of_nodes() == 0:
# Return empty figure with message
fig = go.Figure()
fig.add_annotation(
text="No valid spans to display",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False,
font=dict(size=20)
)
return fig
# Calculate layout using hierarchical layout
try:
# Try to use hierarchical layout (for DAGs)
pos = nx.spring_layout(G, k=2, iterations=50, seed=42)
# If graph is a DAG, use hierarchical layout
if nx.is_directed_acyclic_graph(G):
# Get levels using longest_path_length
levels = {}
for node in G.nodes():
# Find longest path from any root to this node
try:
# Get all paths from roots to this node
roots = [n for n in G.nodes() if G.in_degree(n) == 0]
max_depth = 0
for root in roots:
if nx.has_path(G, root, node):
paths = list(nx.all_simple_paths(G, root, node))
max_depth = max(max_depth, max(len(p) for p in paths) if paths else 0)
levels[node] = max_depth
except:
levels[node] = 0
# Create hierarchical layout
pos = create_hierarchical_layout(G, levels)
except Exception as e:
print(f"[DEBUG] Layout calculation error: {e}")
# Fallback to circular layout
pos = nx.circular_layout(G)
# Extract node positions
node_x = []
node_y = []
node_text = []
node_colors = []
node_sizes = []
hover_text = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
# Get node data
node_data = G.nodes[node]
name = node_data.get('name', 'Unknown')
kind = node_data.get('kind', 'INTERNAL')
# Create label (shortened)
label = shorten_label(name, max_length=20)
node_text.append(label)
# Assign color based on kind
color = get_node_color(kind, node_data.get('status', 'OK'))
node_colors.append(color)
# Size based on importance (LLM and AGENT nodes are larger)
size = 40 if kind in ['LLM', 'AGENT', 'CHAIN'] else 30
node_sizes.append(size)
# Create detailed hover text
hover = f"<b>{name}</b><br>"
hover += f"Type: {kind}<br>"
hover += f"Status: {node_data.get('status', 'OK')}<br>"
if 'model' in node_data:
hover += f"Model: {node_data['model']}<br>"
if 'tool_name' in node_data:
hover += f"Tool: {node_data['tool_name']}<br>"
if 'prompt_tokens' in node_data or 'completion_tokens' in node_data:
# Ensure values are integers, not strings
prompt = int(node_data.get('prompt_tokens', 0) or 0) # Handle None values and convert to int
completion = int(node_data.get('completion_tokens', 0) or 0) # Handle None values and convert to int
hover += f"Tokens: {prompt + completion} (p:{prompt}, c:{completion})<br>"
if 'cost' in node_data and node_data['cost'] is not None:
cost = float(node_data['cost']) # Handle string values
hover += f"Cost: ${cost:.6f}<br>"
hover_text.append(hover)
# Extract edges
edge_x = []
edge_y = []
edge_traces = []
print(f"[DEBUG] Drawing {G.number_of_edges()} edges")
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
print(f"[DEBUG] Edge from ({x0:.2f}, {y0:.2f}) to ({x1:.2f}, {y1:.2f})")
# Create edge line (make it thicker and darker for visibility)
edge_trace = go.Scatter(
x=[x0, x1, None],
y=[y0, y1, None],
mode='lines',
line=dict(width=3, color='#555'), # Increased width from 2 to 3, darker color
hoverinfo='none',
showlegend=False
)
edge_traces.append(edge_trace)
# Add arrow annotation
edge_traces.append(create_arrow_annotation(x0, y0, x1, y1))
# Create node trace
node_trace = go.Scatter(
x=node_x,
y=node_y,
mode='markers+text',
marker=dict(
size=node_sizes,
color=node_colors,
line=dict(width=2, color='white')
),
text=node_text,
textposition='bottom center',
textfont=dict(size=10, color='#333'),
hovertext=hover_text,
hoverinfo='text',
showlegend=False
)
# Create figure
fig = go.Figure(data=edge_traces + [node_trace])
# Update layout with better visibility settings
fig.update_layout(
title={
'text': f"🧠 Agent Thought Graph: {trace_id}",
'x': 0.5,
'xanchor': 'center',
'font': {'size': 20}
},
showlegend=False,
hovermode='closest',
margin=dict(t=100, b=40, l=40, r=40),
height=600,
xaxis=dict(
showgrid=False,
zeroline=False,
showticklabels=False,
range=[-0.1, 1.1] # Add padding to see edges at boundaries
),
yaxis=dict(
showgrid=False,
zeroline=False,
showticklabels=False,
range=[-0.1, 1.1] # Add padding to see edges at boundaries
),
plot_bgcolor='white', # Pure white background for maximum contrast
paper_bgcolor='#f8f9fa', # Light gray paper
annotations=[
dict(
text="💡 Hover over nodes to see details | Arrows show execution flow",
xref="paper", yref="paper",
x=0.5, y=-0.05, xanchor='center', yanchor='top',
showarrow=False,
font=dict(size=11, color='#666')
)
]
)
# Add legend for node types
legend_items = create_legend_items()
fig.add_annotation(
text=legend_items,
xref="paper", yref="paper",
x=1.0, y=1.0, xanchor='right', yanchor='top',
showarrow=False,
font=dict(size=10),
align='left',
bgcolor='white',
bordercolor='#ccc',
borderwidth=1,
borderpad=8
)
return fig
def create_hierarchical_layout(G: nx.DiGraph, levels: Dict[str, int]) -> Dict[str, Tuple[float, float]]:
"""Create a hierarchical layout for the graph"""
pos = {}
# Group nodes by level
level_nodes = {}
for node, level in levels.items():
if level not in level_nodes:
level_nodes[level] = []
level_nodes[level].append(node)
# Assign positions
max_level = max(levels.values()) if levels else 0
for level, nodes in level_nodes.items():
y = 1.0 - (level / max(max_level, 1)) # Top to bottom
num_nodes = len(nodes)
for i, node in enumerate(nodes):
x = (i + 1) / (num_nodes + 1) # Spread evenly
pos[node] = (x, y)
return pos
def get_node_color(kind: str, status: str) -> str:
"""Get color for node based on kind and status"""
# Error status overrides kind color
if status == 'ERROR':
return '#DC143C' # Crimson
# Color by kind
color_map = {
'LLM': '#9B59B6', # Purple
'AGENT': '#1ABC9C', # Turquoise
'CHAIN': '#3498DB', # Light Blue
'TOOL': '#E67E22', # Orange
'RETRIEVER': '#F39C12', # Yellow-Orange
'EMBEDDING': '#8E44AD', # Dark Purple
'CLIENT': '#4169E1', # Royal Blue
'SERVER': '#2E8B57', # Sea Green
'INTERNAL': '#95A5A6', # Gray
}
return color_map.get(kind, '#4682B4') # Steel Blue default
def shorten_label(text: str, max_length: int = 20) -> str:
"""Shorten label for display"""
if len(text) <= max_length:
return text
return text[:max_length-3] + '...'
def create_arrow_annotation(x0: float, y0: float, x1: float, y1: float) -> go.Scatter:
"""Create an arrow annotation between two points"""
# Calculate arrow position (70% along the line, closer to end)
arrow_x = x0 + 0.7 * (x1 - x0)
arrow_y = y0 + 0.7 * (y1 - y0)
# Calculate angle for arrow direction
import math
angle = math.atan2(y1 - y0, x1 - x0)
# Create arrow head (larger and more visible)
arrow_size = 0.03 # Increased from 0.02
arrow_dx = arrow_size * math.cos(angle + 2.8)
arrow_dy = arrow_size * math.sin(angle + 2.8)
arrow_trace = go.Scatter(
x=[arrow_x - arrow_dx, arrow_x, arrow_x + arrow_size * math.cos(angle - 2.8)],
y=[arrow_y - arrow_dy, arrow_y, arrow_y + arrow_size * math.sin(angle - 2.8)],
mode='lines',
line=dict(width=2, color='#555'), # Match edge color
fill='toself',
fillcolor='#555', # Darker fill color
hoverinfo='none',
showlegend=False
)
return arrow_trace
def create_legend_items() -> str:
"""Create HTML legend for node types"""
legend = "<b>Node Types:</b><br>"
legend += "🟣 LLM Call<br>"
legend += "🟠 Tool Call<br>"
legend += "🔵 Chain/Agent<br>"
legend += "⚪ Other<br>"
legend += "🔴 Error"
return legend