Spaces:
Sleeping
Sleeping
import torch | |
import os | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
import streamlit as st | |
# Update with your local file paths | |
model_directory = 'https://huggingface.co/spaces/MBinAsif/Banking-Chatbot/blob/main/model.safetensors' | |
# Load the fine-tuned GPT-2 model and tokenizer | |
model = GPT2LMHeadModel.from_pretrained(model_directory) | |
tokenizer = GPT2Tokenizer.from_pretrained(model_directory) | |
st.title('Banking Chatbot with GPT-2') | |
st.sidebar.title('Options') | |
option = st.sidebar.selectbox('Choose an action', ('Chat', 'Settings')) | |
if option == 'Chat': | |
st.markdown('### Chat with the Bot') | |
user_input = st.text_input('You:', '') | |
if st.button('Send'): | |
input_text = user_input.strip() | |
# Tokenize user input | |
input_ids = tokenizer.encode(input_text, return_tensors='pt') | |
# Generate bot response | |
bot_response_ids = model.generate( | |
input_ids.to(torch.device("cpu")), # Set device to CPU or GPU as appropriate | |
max_length=100, | |
num_return_sequences=1, | |
temperature=0.9, | |
no_repeat_ngram_size=2, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Decode and display bot response | |
bot_response = tokenizer.decode(bot_response_ids[0], skip_special_tokens=True) | |
st.text_area('Bot:', value=bot_response, height=100) | |
elif option == 'Settings': | |
st.markdown('### Settings') | |
st.write("You can configure settings here.") | |
# Run the Streamlit app in your local IDE | |
if __name__ == "__main__": | |
st.write("Make with ❤️ by [Muhammad & Danyaal](https://github.com/MBinAsif/GPT-FineTunned/blob/main/fine_tunning_gpt2.py)") | |