Create app,py
Browse files
app,py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
|
| 7 |
+
# Leaderboard Data (example CSV file for leaderboard)
|
| 8 |
+
LEADERBOARD_FILE = "leaderboard.csv"
|
| 9 |
+
|
| 10 |
+
def clean_answer(answer):
|
| 11 |
+
if pd.isna(answer):
|
| 12 |
+
return None
|
| 13 |
+
answer = str(answer)
|
| 14 |
+
clean = re.sub(r'[^A-Da-d]', '', answer)
|
| 15 |
+
if clean:
|
| 16 |
+
first_letter = clean[0].upper()
|
| 17 |
+
if first_letter in ['A', 'B', 'C', 'D']:
|
| 18 |
+
return first_letter
|
| 19 |
+
return None
|
| 20 |
+
|
| 21 |
+
def update_leaderboard(results):
|
| 22 |
+
# Append results to leaderboard file
|
| 23 |
+
new_entry = {
|
| 24 |
+
"Model Name": results['model_name'],
|
| 25 |
+
"Overall Accuracy": f"{results['overall_accuracy']:.2%}",
|
| 26 |
+
"Valid Accuracy": f"{results['valid_accuracy']:.2%}",
|
| 27 |
+
"Correct Predictions": results['correct_predictions'],
|
| 28 |
+
"Total Questions": results['total_questions'],
|
| 29 |
+
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 30 |
+
}
|
| 31 |
+
leaderboard_df = pd.DataFrame([new_entry])
|
| 32 |
+
if os.path.exists(LEADERBOARD_FILE):
|
| 33 |
+
existing_df = pd.read_csv(LEADERBOARD_FILE)
|
| 34 |
+
leaderboard_df = pd.concat([existing_df, leaderboard_df], ignore_index=True)
|
| 35 |
+
leaderboard_df.to_csv(LEADERBOARD_FILE, index=False)
|
| 36 |
+
|
| 37 |
+
def evaluate_predictions(prediction_file):
|
| 38 |
+
ground_truth_file = "ground_truth.csv" # Specify the path to the ground truth file
|
| 39 |
+
if not prediction_file:
|
| 40 |
+
return "Prediction file not uploaded", None
|
| 41 |
+
|
| 42 |
+
if not os.path.exists(ground_truth_file):
|
| 43 |
+
return "Ground truth file not found", None
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
predictions_df = pd.read_csv(prediction_file.name)
|
| 47 |
+
ground_truth_df = pd.read_csv(ground_truth_file)
|
| 48 |
+
filename = os.path.basename(prediction_file.name)
|
| 49 |
+
model_name = filename.split('_')[1].split('.')[0] if "_" in filename else "unknown_model"
|
| 50 |
+
|
| 51 |
+
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 52 |
+
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 53 |
+
correct_predictions = (merged_df['pred_answer'] == merged_df['Answer']).sum()
|
| 54 |
+
total_predictions = len(merged_df)
|
| 55 |
+
overall_accuracy = correct_predictions / total_predictions
|
| 56 |
+
|
| 57 |
+
results = {
|
| 58 |
+
'model_name': model_name,
|
| 59 |
+
'overall_accuracy': overall_accuracy,
|
| 60 |
+
'correct_predictions': correct_predictions,
|
| 61 |
+
'total_questions': total_predictions,
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
update_leaderboard(results)
|
| 65 |
+
|
| 66 |
+
return "Evaluation completed successfully! Leaderboard updated.", LEADERBOARD_FILE
|
| 67 |
+
except Exception as e:
|
| 68 |
+
return f"Error: {str(e)}", None
|
| 69 |
+
|
| 70 |
+
# Gradio Interface with Leaderboard
|
| 71 |
+
def display_leaderboard():
|
| 72 |
+
if not os.path.exists(LEADERBOARD_FILE):
|
| 73 |
+
return "Leaderboard is empty."
|
| 74 |
+
leaderboard_df = pd.read_csv(LEADERBOARD_FILE)
|
| 75 |
+
return leaderboard_df.to_markdown(index=False)
|
| 76 |
+
|
| 77 |
+
demo = gr.Blocks()
|
| 78 |
+
|
| 79 |
+
with demo:
|
| 80 |
+
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 81 |
+
with gr.Tab("Evaluate"):
|
| 82 |
+
file_input = gr.File(label="Upload Prediction CSV")
|
| 83 |
+
eval_status = gr.Textbox(label="Evaluation Status")
|
| 84 |
+
eval_results_file = gr.File(label="Download Evaluation Results")
|
| 85 |
+
eval_button = gr.Button("Evaluate")
|
| 86 |
+
eval_button.click(
|
| 87 |
+
evaluate_predictions, inputs=file_input, outputs=[eval_status, eval_results_file]
|
| 88 |
+
)
|
| 89 |
+
with gr.Tab("Leaderboard"):
|
| 90 |
+
leaderboard_text = gr.Textbox(label="Leaderboard", interactive=False)
|
| 91 |
+
refresh_button = gr.Button("Refresh Leaderboard")
|
| 92 |
+
refresh_button.click(display_leaderboard, outputs=leaderboard_text)
|
| 93 |
+
|
| 94 |
+
if __name__ == "__main__":
|
| 95 |
+
demo.launch()
|