Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -176,16 +176,205 @@
|
|
| 176 |
# demo.launch()
|
| 177 |
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
import gradio as gr
|
| 180 |
import pandas as pd
|
| 181 |
import os
|
| 182 |
import re
|
| 183 |
from datetime import datetime
|
| 184 |
|
| 185 |
-
LEADERBOARD_FILE = "leaderboard.csv" # File to store
|
| 186 |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
def clean_answer(answer):
|
|
|
|
|
|
|
|
|
|
| 189 |
if pd.isna(answer):
|
| 190 |
return None
|
| 191 |
answer = str(answer)
|
|
@@ -194,49 +383,9 @@ def clean_answer(answer):
|
|
| 194 |
return clean[0].upper()
|
| 195 |
return None
|
| 196 |
|
| 197 |
-
|
| 198 |
-
def evaluate_predictions(prediction_file):
|
| 199 |
-
ground_truth_file = "ground_truth.csv"
|
| 200 |
-
if not os.path.exists(ground_truth_file):
|
| 201 |
-
return "Ground truth file not found."
|
| 202 |
-
if not prediction_file:
|
| 203 |
-
return "Prediction file not uploaded."
|
| 204 |
-
|
| 205 |
-
try:
|
| 206 |
-
predictions_df = pd.read_csv(prediction_file.name)
|
| 207 |
-
ground_truth_df = pd.read_csv(ground_truth_file)
|
| 208 |
-
model_name = os.path.basename(prediction_file.name).split('_')[1].split('.')[0]
|
| 209 |
-
|
| 210 |
-
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 211 |
-
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 212 |
-
|
| 213 |
-
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 214 |
-
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 215 |
-
total_predictions = len(merged_df)
|
| 216 |
-
total_valid_predictions = len(valid_predictions)
|
| 217 |
-
|
| 218 |
-
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 219 |
-
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
| 220 |
-
|
| 221 |
-
results = {
|
| 222 |
-
'model_name': model_name,
|
| 223 |
-
'overall_accuracy': overall_accuracy,
|
| 224 |
-
'valid_accuracy': valid_accuracy,
|
| 225 |
-
'correct_predictions': correct_predictions,
|
| 226 |
-
'total_questions': total_predictions,
|
| 227 |
-
}
|
| 228 |
-
|
| 229 |
-
update_leaderboard(results)
|
| 230 |
-
return "Evaluation completed successfully! Leaderboard updated."
|
| 231 |
-
except Exception as e:
|
| 232 |
-
return f"Error during evaluation: {str(e)}"
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
# Build Gradio App
|
| 236 |
-
|
| 237 |
def update_leaderboard(results):
|
| 238 |
"""
|
| 239 |
-
|
| 240 |
"""
|
| 241 |
new_entry = {
|
| 242 |
"Model Name": results['model_name'],
|
|
@@ -247,37 +396,18 @@ def update_leaderboard(results):
|
|
| 247 |
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 248 |
}
|
| 249 |
|
| 250 |
-
# Convert new entry to DataFrame
|
| 251 |
new_entry_df = pd.DataFrame([new_entry])
|
| 252 |
-
|
| 253 |
-
# Append to leaderboard file
|
| 254 |
-
if not os.path.exists(LEADERBOARD_FILE):
|
| 255 |
-
# If file does not exist, create it with headers
|
| 256 |
-
new_entry_df.to_csv(LEADERBOARD_FILE, index=False)
|
| 257 |
-
else:
|
| 258 |
-
# Append without headers
|
| 259 |
-
new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)
|
| 260 |
-
|
| 261 |
|
| 262 |
def load_leaderboard():
|
| 263 |
"""
|
| 264 |
-
Load
|
| 265 |
"""
|
| 266 |
-
if not os.path.exists(LEADERBOARD_FILE):
|
| 267 |
-
return pd.DataFrame({
|
| 268 |
-
"Model Name": [],
|
| 269 |
-
"Overall Accuracy": [],
|
| 270 |
-
"Valid Accuracy": [],
|
| 271 |
-
"Correct Predictions": [],
|
| 272 |
-
"Total Questions": [],
|
| 273 |
-
"Timestamp": [],
|
| 274 |
-
})
|
| 275 |
return pd.read_csv(LEADERBOARD_FILE)
|
| 276 |
|
| 277 |
-
|
| 278 |
def evaluate_predictions_and_update_leaderboard(prediction_file):
|
| 279 |
"""
|
| 280 |
-
Evaluate predictions and
|
| 281 |
"""
|
| 282 |
ground_truth_file = "ground_truth.csv"
|
| 283 |
if not os.path.exists(ground_truth_file):
|
|
@@ -286,18 +416,22 @@ def evaluate_predictions_and_update_leaderboard(prediction_file):
|
|
| 286 |
return "Prediction file not uploaded.", load_leaderboard()
|
| 287 |
|
| 288 |
try:
|
|
|
|
| 289 |
predictions_df = pd.read_csv(prediction_file.name)
|
| 290 |
ground_truth_df = pd.read_csv(ground_truth_file)
|
| 291 |
model_name = os.path.basename(prediction_file.name).split('_')[1].split('.')[0]
|
| 292 |
|
|
|
|
| 293 |
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 294 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 295 |
|
|
|
|
| 296 |
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 297 |
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 298 |
total_predictions = len(merged_df)
|
| 299 |
total_valid_predictions = len(valid_predictions)
|
| 300 |
|
|
|
|
| 301 |
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 302 |
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
| 303 |
|
|
@@ -309,12 +443,13 @@ def evaluate_predictions_and_update_leaderboard(prediction_file):
|
|
| 309 |
'total_questions': total_predictions,
|
| 310 |
}
|
| 311 |
|
|
|
|
| 312 |
update_leaderboard(results)
|
| 313 |
return "Evaluation completed successfully! Leaderboard updated.", load_leaderboard()
|
| 314 |
except Exception as e:
|
| 315 |
return f"Error during evaluation: {str(e)}", load_leaderboard()
|
| 316 |
|
| 317 |
-
#
|
| 318 |
with gr.Blocks() as demo:
|
| 319 |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 320 |
|
|
|
|
| 176 |
# demo.launch()
|
| 177 |
|
| 178 |
|
| 179 |
+
# import gradio as gr
|
| 180 |
+
# import pandas as pd
|
| 181 |
+
# import os
|
| 182 |
+
# import re
|
| 183 |
+
# from datetime import datetime
|
| 184 |
+
|
| 185 |
+
# LEADERBOARD_FILE = "leaderboard.csv" # File to store leaderboard data
|
| 186 |
+
# LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
| 187 |
+
|
| 188 |
+
# def clean_answer(answer):
|
| 189 |
+
# if pd.isna(answer):
|
| 190 |
+
# return None
|
| 191 |
+
# answer = str(answer)
|
| 192 |
+
# clean = re.sub(r'[^A-Da-d]', '', answer)
|
| 193 |
+
# if clean:
|
| 194 |
+
# return clean[0].upper()
|
| 195 |
+
# return None
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
# def evaluate_predictions(prediction_file):
|
| 199 |
+
# ground_truth_file = "ground_truth.csv"
|
| 200 |
+
# if not os.path.exists(ground_truth_file):
|
| 201 |
+
# return "Ground truth file not found."
|
| 202 |
+
# if not prediction_file:
|
| 203 |
+
# return "Prediction file not uploaded."
|
| 204 |
+
|
| 205 |
+
# try:
|
| 206 |
+
# predictions_df = pd.read_csv(prediction_file.name)
|
| 207 |
+
# ground_truth_df = pd.read_csv(ground_truth_file)
|
| 208 |
+
# model_name = os.path.basename(prediction_file.name).split('_')[1].split('.')[0]
|
| 209 |
+
|
| 210 |
+
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 211 |
+
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 212 |
+
|
| 213 |
+
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 214 |
+
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 215 |
+
# total_predictions = len(merged_df)
|
| 216 |
+
# total_valid_predictions = len(valid_predictions)
|
| 217 |
+
|
| 218 |
+
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 219 |
+
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
| 220 |
+
|
| 221 |
+
# results = {
|
| 222 |
+
# 'model_name': model_name,
|
| 223 |
+
# 'overall_accuracy': overall_accuracy,
|
| 224 |
+
# 'valid_accuracy': valid_accuracy,
|
| 225 |
+
# 'correct_predictions': correct_predictions,
|
| 226 |
+
# 'total_questions': total_predictions,
|
| 227 |
+
# }
|
| 228 |
+
|
| 229 |
+
# update_leaderboard(results)
|
| 230 |
+
# return "Evaluation completed successfully! Leaderboard updated."
|
| 231 |
+
# except Exception as e:
|
| 232 |
+
# return f"Error during evaluation: {str(e)}"
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
# # Build Gradio App
|
| 236 |
+
|
| 237 |
+
# def update_leaderboard(results):
|
| 238 |
+
# """
|
| 239 |
+
# Update the leaderboard file with new results.
|
| 240 |
+
# """
|
| 241 |
+
# new_entry = {
|
| 242 |
+
# "Model Name": results['model_name'],
|
| 243 |
+
# "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
| 244 |
+
# "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
| 245 |
+
# "Correct Predictions": results['correct_predictions'],
|
| 246 |
+
# "Total Questions": results['total_questions'],
|
| 247 |
+
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 248 |
+
# }
|
| 249 |
+
|
| 250 |
+
# # Convert new entry to DataFrame
|
| 251 |
+
# new_entry_df = pd.DataFrame([new_entry])
|
| 252 |
+
|
| 253 |
+
# # Append to leaderboard file
|
| 254 |
+
# if not os.path.exists(LEADERBOARD_FILE):
|
| 255 |
+
# # If file does not exist, create it with headers
|
| 256 |
+
# new_entry_df.to_csv(LEADERBOARD_FILE, index=False)
|
| 257 |
+
# else:
|
| 258 |
+
# # Append without headers
|
| 259 |
+
# new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
# def load_leaderboard():
|
| 263 |
+
# """
|
| 264 |
+
# Load the leaderboard from the leaderboard file.
|
| 265 |
+
# """
|
| 266 |
+
# if not os.path.exists(LEADERBOARD_FILE):
|
| 267 |
+
# return pd.DataFrame({
|
| 268 |
+
# "Model Name": [],
|
| 269 |
+
# "Overall Accuracy": [],
|
| 270 |
+
# "Valid Accuracy": [],
|
| 271 |
+
# "Correct Predictions": [],
|
| 272 |
+
# "Total Questions": [],
|
| 273 |
+
# "Timestamp": [],
|
| 274 |
+
# })
|
| 275 |
+
# return pd.read_csv(LEADERBOARD_FILE)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
# def evaluate_predictions_and_update_leaderboard(prediction_file):
|
| 279 |
+
# """
|
| 280 |
+
# Evaluate predictions and update the leaderboard.
|
| 281 |
+
# """
|
| 282 |
+
# ground_truth_file = "ground_truth.csv"
|
| 283 |
+
# if not os.path.exists(ground_truth_file):
|
| 284 |
+
# return "Ground truth file not found.", load_leaderboard()
|
| 285 |
+
# if not prediction_file:
|
| 286 |
+
# return "Prediction file not uploaded.", load_leaderboard()
|
| 287 |
+
|
| 288 |
+
# try:
|
| 289 |
+
# predictions_df = pd.read_csv(prediction_file.name)
|
| 290 |
+
# ground_truth_df = pd.read_csv(ground_truth_file)
|
| 291 |
+
# model_name = os.path.basename(prediction_file.name).split('_')[1].split('.')[0]
|
| 292 |
+
|
| 293 |
+
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 294 |
+
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 295 |
+
|
| 296 |
+
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 297 |
+
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 298 |
+
# total_predictions = len(merged_df)
|
| 299 |
+
# total_valid_predictions = len(valid_predictions)
|
| 300 |
+
|
| 301 |
+
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 302 |
+
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
| 303 |
+
|
| 304 |
+
# results = {
|
| 305 |
+
# 'model_name': model_name,
|
| 306 |
+
# 'overall_accuracy': overall_accuracy,
|
| 307 |
+
# 'valid_accuracy': valid_accuracy,
|
| 308 |
+
# 'correct_predictions': correct_predictions,
|
| 309 |
+
# 'total_questions': total_predictions,
|
| 310 |
+
# }
|
| 311 |
+
|
| 312 |
+
# update_leaderboard(results)
|
| 313 |
+
# return "Evaluation completed successfully! Leaderboard updated.", load_leaderboard()
|
| 314 |
+
# except Exception as e:
|
| 315 |
+
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
| 316 |
+
|
| 317 |
+
# # Build Gradio App
|
| 318 |
+
# with gr.Blocks() as demo:
|
| 319 |
+
# gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 320 |
+
|
| 321 |
+
# with gr.Tabs():
|
| 322 |
+
# # Submission Tab
|
| 323 |
+
# with gr.TabItem("🏅 Submission"):
|
| 324 |
+
# file_input = gr.File(label="Upload Prediction CSV")
|
| 325 |
+
# eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
|
| 326 |
+
# leaderboard_table_preview = gr.Dataframe(
|
| 327 |
+
# value=load_leaderboard(),
|
| 328 |
+
# label="Leaderboard (Preview)",
|
| 329 |
+
# interactive=False,
|
| 330 |
+
# wrap=True,
|
| 331 |
+
# )
|
| 332 |
+
# eval_button = gr.Button("Evaluate and Update Leaderboard")
|
| 333 |
+
# eval_button.click(
|
| 334 |
+
# evaluate_predictions_and_update_leaderboard,
|
| 335 |
+
# inputs=[file_input],
|
| 336 |
+
# outputs=[eval_status, leaderboard_table_preview],
|
| 337 |
+
# )
|
| 338 |
+
|
| 339 |
+
# # Leaderboard Tab
|
| 340 |
+
# with gr.TabItem("🏅 Leaderboard"):
|
| 341 |
+
# leaderboard_table = gr.Dataframe(
|
| 342 |
+
# value=load_leaderboard(),
|
| 343 |
+
# label="Leaderboard",
|
| 344 |
+
# interactive=False,
|
| 345 |
+
# wrap=True,
|
| 346 |
+
# )
|
| 347 |
+
# refresh_button = gr.Button("Refresh Leaderboard")
|
| 348 |
+
# refresh_button.click(
|
| 349 |
+
# lambda: load_leaderboard(),
|
| 350 |
+
# inputs=[],
|
| 351 |
+
# outputs=[leaderboard_table],
|
| 352 |
+
# )
|
| 353 |
+
|
| 354 |
+
# gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
| 355 |
+
|
| 356 |
+
# demo.launch()
|
| 357 |
+
|
| 358 |
import gradio as gr
|
| 359 |
import pandas as pd
|
| 360 |
import os
|
| 361 |
import re
|
| 362 |
from datetime import datetime
|
| 363 |
|
| 364 |
+
LEADERBOARD_FILE = "leaderboard.csv" # File to store all submissions persistently
|
| 365 |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
| 366 |
|
| 367 |
+
# Initialize the leaderboard file if it doesn't exist
|
| 368 |
+
if not os.path.exists(LEADERBOARD_FILE):
|
| 369 |
+
pd.DataFrame(columns=[
|
| 370 |
+
"Model Name", "Overall Accuracy", "Valid Accuracy",
|
| 371 |
+
"Correct Predictions", "Total Questions", "Timestamp"
|
| 372 |
+
]).to_csv(LEADERBOARD_FILE, index=False)
|
| 373 |
+
|
| 374 |
def clean_answer(answer):
|
| 375 |
+
"""
|
| 376 |
+
Clean and normalize the predicted answers.
|
| 377 |
+
"""
|
| 378 |
if pd.isna(answer):
|
| 379 |
return None
|
| 380 |
answer = str(answer)
|
|
|
|
| 383 |
return clean[0].upper()
|
| 384 |
return None
|
| 385 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
def update_leaderboard(results):
|
| 387 |
"""
|
| 388 |
+
Append new submission results to the leaderboard file.
|
| 389 |
"""
|
| 390 |
new_entry = {
|
| 391 |
"Model Name": results['model_name'],
|
|
|
|
| 396 |
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 397 |
}
|
| 398 |
|
|
|
|
| 399 |
new_entry_df = pd.DataFrame([new_entry])
|
| 400 |
+
new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
|
| 402 |
def load_leaderboard():
|
| 403 |
"""
|
| 404 |
+
Load all submissions from the leaderboard file.
|
| 405 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
return pd.read_csv(LEADERBOARD_FILE)
|
| 407 |
|
|
|
|
| 408 |
def evaluate_predictions_and_update_leaderboard(prediction_file):
|
| 409 |
"""
|
| 410 |
+
Evaluate predictions and append results to the leaderboard.
|
| 411 |
"""
|
| 412 |
ground_truth_file = "ground_truth.csv"
|
| 413 |
if not os.path.exists(ground_truth_file):
|
|
|
|
| 416 |
return "Prediction file not uploaded.", load_leaderboard()
|
| 417 |
|
| 418 |
try:
|
| 419 |
+
# Load predictions and ground truth
|
| 420 |
predictions_df = pd.read_csv(prediction_file.name)
|
| 421 |
ground_truth_df = pd.read_csv(ground_truth_file)
|
| 422 |
model_name = os.path.basename(prediction_file.name).split('_')[1].split('.')[0]
|
| 423 |
|
| 424 |
+
# Merge predictions with ground truth
|
| 425 |
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 426 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 427 |
|
| 428 |
+
# Evaluate predictions
|
| 429 |
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 430 |
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 431 |
total_predictions = len(merged_df)
|
| 432 |
total_valid_predictions = len(valid_predictions)
|
| 433 |
|
| 434 |
+
# Calculate accuracy
|
| 435 |
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 436 |
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
| 437 |
|
|
|
|
| 443 |
'total_questions': total_predictions,
|
| 444 |
}
|
| 445 |
|
| 446 |
+
# Update leaderboard
|
| 447 |
update_leaderboard(results)
|
| 448 |
return "Evaluation completed successfully! Leaderboard updated.", load_leaderboard()
|
| 449 |
except Exception as e:
|
| 450 |
return f"Error during evaluation: {str(e)}", load_leaderboard()
|
| 451 |
|
| 452 |
+
# Gradio Interface
|
| 453 |
with gr.Blocks() as demo:
|
| 454 |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 455 |
|