Update app.py
Browse files
app.py
CHANGED
|
@@ -170,47 +170,39 @@ import re
|
|
| 170 |
from datetime import datetime
|
| 171 |
from huggingface_hub import hf_hub_download
|
| 172 |
|
| 173 |
-
LEADERBOARD_FILE = "leaderboard.csv"
|
| 174 |
-
GROUND_TRUTH_FILE = "ground_truth.csv"
|
| 175 |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
| 176 |
|
| 177 |
-
#
|
| 178 |
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
def initialize_leaderboard_file():
|
| 181 |
"""
|
| 182 |
Ensure the leaderboard file exists and has the correct headers.
|
| 183 |
"""
|
| 184 |
if not os.path.exists(LEADERBOARD_FILE):
|
| 185 |
-
# Create the file with headers
|
| 186 |
pd.DataFrame(columns=[
|
| 187 |
"Model Name", "Overall Accuracy", "Valid Accuracy",
|
| 188 |
"Correct Predictions", "Total Questions", "Timestamp"
|
| 189 |
]).to_csv(LEADERBOARD_FILE, index=False)
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
"Correct Predictions", "Total Questions", "Timestamp"
|
| 196 |
-
]).to_csv(LEADERBOARD_FILE, index=False)
|
| 197 |
|
| 198 |
def clean_answer(answer):
|
| 199 |
-
"""
|
| 200 |
-
Clean and normalize the predicted answers.
|
| 201 |
-
"""
|
| 202 |
if pd.isna(answer):
|
| 203 |
return None
|
| 204 |
answer = str(answer)
|
| 205 |
clean = re.sub(r'[^A-Da-d]', '', answer)
|
| 206 |
-
if clean
|
| 207 |
-
return clean[0].upper()
|
| 208 |
-
return None
|
| 209 |
|
| 210 |
def update_leaderboard(results):
|
| 211 |
-
"""
|
| 212 |
-
Append new submission results to the leaderboard file.
|
| 213 |
-
"""
|
| 214 |
new_entry = {
|
| 215 |
"Model Name": results['model_name'],
|
| 216 |
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
|
@@ -219,14 +211,10 @@ def update_leaderboard(results):
|
|
| 219 |
"Total Questions": results['total_questions'],
|
| 220 |
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 221 |
}
|
| 222 |
-
|
| 223 |
new_entry_df = pd.DataFrame([new_entry])
|
| 224 |
new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)
|
| 225 |
|
| 226 |
def load_leaderboard():
|
| 227 |
-
"""
|
| 228 |
-
Load all submissions from the leaderboard file.
|
| 229 |
-
"""
|
| 230 |
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
| 231 |
return pd.DataFrame({
|
| 232 |
"Model Name": [],
|
|
@@ -239,17 +227,16 @@ def load_leaderboard():
|
|
| 239 |
return pd.read_csv(LEADERBOARD_FILE)
|
| 240 |
|
| 241 |
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
| 242 |
-
"""
|
| 243 |
-
Evaluate predictions and optionally add results to the leaderboard.
|
| 244 |
-
"""
|
| 245 |
try:
|
| 246 |
-
# Load ground truth data
|
| 247 |
ground_truth_path = hf_hub_download(
|
| 248 |
repo_id="SondosMB/ground-truth-dataset",
|
| 249 |
-
filename=
|
|
|
|
| 250 |
use_auth_token=True
|
| 251 |
)
|
| 252 |
ground_truth_df = pd.read_csv(ground_truth_path)
|
|
|
|
|
|
|
| 253 |
except Exception as e:
|
| 254 |
return f"Error loading ground truth: {e}", load_leaderboard()
|
| 255 |
|
|
@@ -257,18 +244,15 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
| 257 |
return "Prediction file not uploaded.", load_leaderboard()
|
| 258 |
|
| 259 |
try:
|
| 260 |
-
# Load predictions and merge with ground truth
|
| 261 |
predictions_df = pd.read_csv(prediction_file.name)
|
| 262 |
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 263 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 264 |
|
| 265 |
-
# Evaluate predictions
|
| 266 |
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 267 |
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 268 |
total_predictions = len(merged_df)
|
| 269 |
total_valid_predictions = len(valid_predictions)
|
| 270 |
|
| 271 |
-
# Calculate accuracy
|
| 272 |
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 273 |
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
| 274 |
|
|
@@ -280,7 +264,6 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
| 280 |
'total_questions': total_predictions,
|
| 281 |
}
|
| 282 |
|
| 283 |
-
# Update leaderboard only if opted in
|
| 284 |
if add_to_leaderboard:
|
| 285 |
update_leaderboard(results)
|
| 286 |
return "Evaluation completed and added to leaderboard.", load_leaderboard()
|
|
@@ -289,15 +272,12 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
| 289 |
except Exception as e:
|
| 290 |
return f"Error during evaluation: {str(e)}", load_leaderboard()
|
| 291 |
|
| 292 |
-
# Initialize leaderboard file
|
| 293 |
initialize_leaderboard_file()
|
| 294 |
|
| 295 |
-
# Gradio Interface
|
| 296 |
with gr.Blocks() as demo:
|
| 297 |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 298 |
|
| 299 |
with gr.Tabs():
|
| 300 |
-
# Submission Tab
|
| 301 |
with gr.TabItem("π
Submission"):
|
| 302 |
file_input = gr.File(label="Upload Prediction CSV")
|
| 303 |
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
|
|
@@ -316,7 +296,6 @@ with gr.Blocks() as demo:
|
|
| 316 |
outputs=[eval_status, leaderboard_table_preview],
|
| 317 |
)
|
| 318 |
|
| 319 |
-
# Leaderboard Tab
|
| 320 |
with gr.TabItem("π
Leaderboard"):
|
| 321 |
leaderboard_table = gr.Dataframe(
|
| 322 |
value=load_leaderboard(),
|
|
|
|
| 170 |
from datetime import datetime
|
| 171 |
from huggingface_hub import hf_hub_download
|
| 172 |
|
| 173 |
+
LEADERBOARD_FILE = "leaderboard.csv"
|
| 174 |
+
GROUND_TRUTH_FILE = "ground_truth.csv"
|
| 175 |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
| 176 |
|
| 177 |
+
# Ensure authentication and suppress warnings
|
| 178 |
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
| 179 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 180 |
+
if not HF_TOKEN:
|
| 181 |
+
raise ValueError("HF_TOKEN environment variable is not set or invalid.")
|
| 182 |
|
| 183 |
def initialize_leaderboard_file():
|
| 184 |
"""
|
| 185 |
Ensure the leaderboard file exists and has the correct headers.
|
| 186 |
"""
|
| 187 |
if not os.path.exists(LEADERBOARD_FILE):
|
|
|
|
| 188 |
pd.DataFrame(columns=[
|
| 189 |
"Model Name", "Overall Accuracy", "Valid Accuracy",
|
| 190 |
"Correct Predictions", "Total Questions", "Timestamp"
|
| 191 |
]).to_csv(LEADERBOARD_FILE, index=False)
|
| 192 |
+
elif os.stat(LEADERBOARD_FILE).st_size == 0:
|
| 193 |
+
pd.DataFrame(columns=[
|
| 194 |
+
"Model Name", "Overall Accuracy", "Valid Accuracy",
|
| 195 |
+
"Correct Predictions", "Total Questions", "Timestamp"
|
| 196 |
+
]).to_csv(LEADERBOARD_FILE, index=False)
|
|
|
|
|
|
|
| 197 |
|
| 198 |
def clean_answer(answer):
|
|
|
|
|
|
|
|
|
|
| 199 |
if pd.isna(answer):
|
| 200 |
return None
|
| 201 |
answer = str(answer)
|
| 202 |
clean = re.sub(r'[^A-Da-d]', '', answer)
|
| 203 |
+
return clean[0].upper() if clean else None
|
|
|
|
|
|
|
| 204 |
|
| 205 |
def update_leaderboard(results):
|
|
|
|
|
|
|
|
|
|
| 206 |
new_entry = {
|
| 207 |
"Model Name": results['model_name'],
|
| 208 |
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
|
|
|
| 211 |
"Total Questions": results['total_questions'],
|
| 212 |
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 213 |
}
|
|
|
|
| 214 |
new_entry_df = pd.DataFrame([new_entry])
|
| 215 |
new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)
|
| 216 |
|
| 217 |
def load_leaderboard():
|
|
|
|
|
|
|
|
|
|
| 218 |
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
| 219 |
return pd.DataFrame({
|
| 220 |
"Model Name": [],
|
|
|
|
| 227 |
return pd.read_csv(LEADERBOARD_FILE)
|
| 228 |
|
| 229 |
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
|
|
|
|
|
|
|
|
| 230 |
try:
|
|
|
|
| 231 |
ground_truth_path = hf_hub_download(
|
| 232 |
repo_id="SondosMB/ground-truth-dataset",
|
| 233 |
+
filename="ground_truth.csv",
|
| 234 |
+
repo_type="dataset",
|
| 235 |
use_auth_token=True
|
| 236 |
)
|
| 237 |
ground_truth_df = pd.read_csv(ground_truth_path)
|
| 238 |
+
except FileNotFoundError:
|
| 239 |
+
return "Ground truth file not found in the dataset repository.", load_leaderboard()
|
| 240 |
except Exception as e:
|
| 241 |
return f"Error loading ground truth: {e}", load_leaderboard()
|
| 242 |
|
|
|
|
| 244 |
return "Prediction file not uploaded.", load_leaderboard()
|
| 245 |
|
| 246 |
try:
|
|
|
|
| 247 |
predictions_df = pd.read_csv(prediction_file.name)
|
| 248 |
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 249 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 250 |
|
|
|
|
| 251 |
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 252 |
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 253 |
total_predictions = len(merged_df)
|
| 254 |
total_valid_predictions = len(valid_predictions)
|
| 255 |
|
|
|
|
| 256 |
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 257 |
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
| 258 |
|
|
|
|
| 264 |
'total_questions': total_predictions,
|
| 265 |
}
|
| 266 |
|
|
|
|
| 267 |
if add_to_leaderboard:
|
| 268 |
update_leaderboard(results)
|
| 269 |
return "Evaluation completed and added to leaderboard.", load_leaderboard()
|
|
|
|
| 272 |
except Exception as e:
|
| 273 |
return f"Error during evaluation: {str(e)}", load_leaderboard()
|
| 274 |
|
|
|
|
| 275 |
initialize_leaderboard_file()
|
| 276 |
|
|
|
|
| 277 |
with gr.Blocks() as demo:
|
| 278 |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 279 |
|
| 280 |
with gr.Tabs():
|
|
|
|
| 281 |
with gr.TabItem("π
Submission"):
|
| 282 |
file_input = gr.File(label="Upload Prediction CSV")
|
| 283 |
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
|
|
|
|
| 296 |
outputs=[eval_status, leaderboard_table_preview],
|
| 297 |
)
|
| 298 |
|
|
|
|
| 299 |
with gr.TabItem("π
Leaderboard"):
|
| 300 |
leaderboard_table = gr.Dataframe(
|
| 301 |
value=load_leaderboard(),
|