Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| import os | |
| import re | |
| from datetime import datetime | |
| from huggingface_hub import hf_hub_download | |
| from huggingface_hub import HfApi, HfFolder | |
| LEADERBOARD_FILE = "leaderboard.csv" | |
| GROUND_TRUTH_FILE = "ground_truth.csv" | |
| LAST_UPDATED = datetime.now().strftime("%B %d, %Y") | |
| # Ensure authentication and suppress warnings | |
| os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1" | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| if not HF_TOKEN: | |
| raise ValueError("HF_TOKEN environment variable is not set or invalid.") | |
| def initialize_leaderboard_file(): | |
| """ | |
| Ensure the leaderboard file exists and has the correct headers. | |
| """ | |
| if not os.path.exists(LEADERBOARD_FILE): | |
| pd.DataFrame(columns=[ | |
| "Model Name", "Overall Accuracy", "Valid Accuracy", | |
| "Correct Predictions", "Total Questions", "Timestamp" | |
| ]).to_csv(LEADERBOARD_FILE, index=False) | |
| elif os.stat(LEADERBOARD_FILE).st_size == 0: | |
| pd.DataFrame(columns=[ | |
| "Model Name", "Overall Accuracy", "Valid Accuracy", | |
| "Correct Predictions", "Total Questions", "Timestamp" | |
| ]).to_csv(LEADERBOARD_FILE, index=False) | |
| def clean_answer(answer): | |
| if pd.isna(answer): | |
| return None | |
| answer = str(answer) | |
| clean = re.sub(r'[^A-Da-d]', '', answer) | |
| return clean[0].upper() if clean else None | |
| def update_leaderboard(results): | |
| """ | |
| Append new submission results to the leaderboard file and push updates to the Hugging Face repository. | |
| """ | |
| new_entry = { | |
| "Model Name": results['model_name'], | |
| "Overall Accuracy": round(results['overall_accuracy'] * 100, 2), | |
| "Valid Accuracy": round(results['valid_accuracy'] * 100, 2), | |
| "Correct Predictions": results['correct_predictions'], | |
| "Total Questions": results['total_questions'], | |
| "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
| } | |
| try: | |
| # Update the local leaderboard file | |
| new_entry_df = pd.DataFrame([new_entry]) | |
| file_exists = os.path.exists(LEADERBOARD_FILE) | |
| new_entry_df.to_csv( | |
| LEADERBOARD_FILE, | |
| mode='a', # Append mode | |
| index=False, | |
| header=not file_exists # Write header only if the file is new | |
| ) | |
| print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}") | |
| # Push the updated file to the Hugging Face repository using HTTP API | |
| api = HfApi() | |
| token = HfFolder.get_token() | |
| api.upload_file( | |
| path_or_fileobj=LEADERBOARD_FILE, | |
| path_in_repo="leaderboard.csv", | |
| repo_id="SondosMB/ss", # Your Space repository | |
| repo_type="space", | |
| token=token | |
| ) | |
| print("Leaderboard changes pushed to Hugging Face repository.") | |
| except Exception as e: | |
| print(f"Error updating leaderboard file: {e}") | |
| def load_leaderboard(): | |
| if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0: | |
| return pd.DataFrame({ | |
| "Model Name": [], | |
| "Overall Accuracy": [], | |
| "Valid Accuracy": [], | |
| "Correct Predictions": [], | |
| "Total Questions": [], | |
| "Timestamp": [], | |
| }) | |
| return pd.read_csv(LEADERBOARD_FILE) | |
| def evaluate_predictions(prediction_file, model_name, add_to_leaderboard): | |
| try: | |
| ground_truth_path = hf_hub_download( | |
| repo_id="SondosMB/ground-truth-dataset", | |
| filename="ground_truth.csv", | |
| repo_type="dataset", | |
| use_auth_token=True | |
| ) | |
| ground_truth_df = pd.read_csv(ground_truth_path) | |
| except FileNotFoundError: | |
| return "Ground truth file not found in the dataset repository.", load_leaderboard() | |
| except Exception as e: | |
| return f"Error loading ground truth: {e}", load_leaderboard() | |
| if not prediction_file: | |
| return "Prediction file not uploaded.", load_leaderboard() | |
| try: | |
| #load predition file | |
| predictions_df = pd.read_csv(prediction_file.name) | |
| # Validate required columns in prediction file | |
| required_columns = ['question_id', 'predicted_answer'] | |
| missing_columns = [col for col in required_columns if col not in predictions_df.columns] | |
| if missing_columns: | |
| return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.", | |
| load_leaderboard()) | |
| # Validate 'Answer' column in ground truth file | |
| if 'Answer' not in ground_truth_df.columns: | |
| return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard() | |
| merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner') | |
| merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer) | |
| valid_predictions = merged_df.dropna(subset=['pred_answer']) | |
| correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum() | |
| total_predictions = len(merged_df) | |
| total_valid_predictions = len(valid_predictions) | |
| overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0 | |
| valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0 | |
| results = { | |
| 'model_name': model_name if model_name else "Unknown Model", | |
| 'overall_accuracy': overall_accuracy, | |
| 'valid_accuracy': valid_accuracy, | |
| 'correct_predictions': correct_predictions, | |
| 'total_questions': total_predictions, | |
| } | |
| if add_to_leaderboard: | |
| update_leaderboard(results) | |
| return "Evaluation completed and added to leaderboard.", load_leaderboard() | |
| else: | |
| return "Evaluation completed but not added to leaderboard.", load_leaderboard() | |
| except Exception as e: | |
| return f"Error during evaluation: {str(e)}", load_leaderboard() | |
| initialize_leaderboard_file() | |
| # Function to set default mode | |
| # Function to set default mode | |
| import gradio as gr | |
| # # Custom CSS to match website style | |
| # # Define CSS to match a modern, professional design | |
| # # Define enhanced CSS for the entire layout | |
| css_tech_theme = """ | |
| body { | |
| font-family: 'Roboto', sans-serif; | |
| background-color: #f4f6fa; | |
| color: #333333; | |
| margin: 0; | |
| padding: 0; | |
| } | |
| /* Header Styling */ | |
| header { | |
| text-align: center; | |
| padding: 60px 20px; | |
| background: linear-gradient(135deg, #6a1b9a, #64b5f6); | |
| color: #ffffff; | |
| border-radius: 12px; | |
| margin-bottom: 30px; | |
| box-shadow: 0 6px 20px rgba(0, 0, 0, 0.2); | |
| } | |
| header h1 { | |
| font-size: 3.5em; | |
| font-weight: bold; | |
| margin-bottom: 10px; | |
| } | |
| header h2 { | |
| font-size: 2em; | |
| margin-bottom: 15px; | |
| } | |
| header p { | |
| font-size: 1em; | |
| line-height: 1.8; | |
| } | |
| .header-buttons { | |
| display: flex; | |
| justify-content: center; | |
| gap: 15px; | |
| margin-top: 20px; | |
| } | |
| .header-buttons a { | |
| text-decoration: none; | |
| font-size: 1.5em; | |
| padding: 15px 30px; | |
| border-radius: 30px; | |
| font-weight: bold; | |
| background: #ffffff; | |
| color: #6a1b9a; | |
| transition: transform 0.3s, background 0.3s; | |
| box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1); | |
| } | |
| .header-buttons a:hover { | |
| background: #64b5f6; | |
| color: #ffffff; | |
| transform: scale(1.05); | |
| } | |
| /* Pre-Tabs Section */ | |
| .pre-tabs { | |
| text-align: center; | |
| padding: 40px 20px; | |
| background: linear-gradient(135deg, #ffffff, #f9fafb); | |
| border-top: 5px solid #64b5f6; | |
| border-bottom: 5px solid #6a1b9a; | |
| } | |
| .pre-tabs h2, .post-tabs h2 { | |
| font-size: 3em; /* Increase the size for better visibility */ | |
| } | |
| .pre-tabs p, .post-tabs p { | |
| font-size: 2.5em; /* Adjust paragraph text size */ | |
| } | |
| .pre-tabs h2 { | |
| color: #333333; | |
| margin-bottom: 15px; | |
| } | |
| .pre-tabs p { | |
| color: #555555; | |
| line-height: 1.8; | |
| } | |
| /* Tabs Section */ | |
| .tabs { | |
| margin: 0 auto; | |
| padding: 20px; | |
| background: #ffffff; | |
| border-radius: 12px; | |
| box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1); | |
| /* max-width: 1300px; /* change 1 */ */ | |
| } | |
| /* Post-Tabs Section */ | |
| .post-tabs { | |
| text-align: center; | |
| padding: 40px 20px; | |
| background: linear-gradient(135deg, #64b5f6, #6a1b9a); | |
| color: #ffffff; | |
| border-radius: 12px; | |
| margin-top: 30px; | |
| } | |
| .post-tabs h2 { | |
| font-size: 3.4em; | |
| margin-bottom: 15px; | |
| } | |
| .post-tabs p { | |
| font-size: 2em; | |
| line-height: 1.8; | |
| margin-bottom: 20px; | |
| } | |
| .post-tabs a { | |
| text-decoration: none; | |
| font-size: 1.1em; | |
| padding: 15px 30px; | |
| border-radius: 30px; | |
| font-weight: bold; | |
| background: #ffffff; | |
| color: #6a1b9a; | |
| transition: transform 0.3s, background 0.3s; | |
| box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1); | |
| } | |
| .post-tabs a:hover { | |
| background: #6a1b9a; | |
| color: #ffffff; | |
| transform: scale(1.05); | |
| } | |
| /* Footer */ | |
| footer { | |
| background: linear-gradient(135deg, #6a1b9a, #8e44ad); | |
| color: #ffffff; | |
| text-align: center; | |
| padding: 40px 20px; | |
| margin-top: 30px; | |
| border-radius: 12px; | |
| box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2); | |
| } | |
| footer h2 { | |
| font-size: 1.5em; | |
| margin-bottom: 15px; | |
| } | |
| footer p { | |
| font-size: 0.8em; | |
| line-height: 1.6; | |
| margin-bottom: 20px; | |
| } | |
| /* Link Styling */ | |
| .social-links { | |
| display: flex; | |
| justify-content: center; | |
| gap: 15px; /* Space between links */ | |
| } | |
| .social-link { | |
| display: inline-block; | |
| text-decoration: none; | |
| color: #ffffff; | |
| background-color: #6a1b9a; /* Purple button background */ | |
| padding: 10px 20px; | |
| border-radius: 30px; | |
| font-size: 16px; | |
| font-weight: bold; | |
| transition: all 0.3s ease; | |
| box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1); | |
| } | |
| .social-link:hover { | |
| background-color: #8c52d3; /* Darker shade on hover */ | |
| box-shadow: 0 6px 15px rgba(0, 0, 0, 0.2); | |
| transform: translateY(-2px); | |
| } | |
| .social-link:active { | |
| transform: translateY(1px); | |
| box-shadow: 0 3px 8px rgba(0, 0, 0, 0.1); | |
| } | |
| """ | |
| # Create the Gradio Interface | |
| with gr.Blocks(css=css_tech_theme) as demo: | |
| # Header Section | |
| gr.Markdown(""" | |
| <header> | |
| <h1>π Mobile-MMLU Challenge</h1> | |
| <h2>π Pushing the Limits of Mobile LLMs</h2> | |
| </header> | |
| """) | |
| # # Pre-Tabs Section | |
| gr.Markdown(""" | |
| <section class="pre-tabs"> | |
| <h2>Why Participate?</h2> | |
| <p> | |
| The Mobile-MMLU Benchmark Competition offers a unique opportunity to evaluate your LLMs in real-world mobile scenarios. Join the challenge to drive innovation, showcase your expertise, and shape the future of mobile AI. | |
| </p> | |
| </section> | |
| """) | |
| # Tabs Section | |
| with gr.Tabs(elem_id="tabs"): | |
| # Overview Tab | |
| with gr.TabItem("π Overview"): | |
| gr.Markdown(""" | |
| <div class="tabs"> | |
| <h2>About the Competition</h2> | |
| <p>The <strong>Mobile-MMLU Benchmark Competition</strong> is a premier challenge designed to evaluate and advance mobile-optimized Large Language Models (LLMs). It provides an unparalleled opportunity to showcase your model's ability to handle diverse, real-world scenarios while pushing the boundaries of mobile intelligence.</p> | |
| <p>With a dataset spanning <strong>80 distinct fields</strong> and featuring <strong>16,186 questions</strong>, this competition emphasizes practical application. From education and healthcare to technology and daily life, the questions are crafted to mimic real-world challenges and test the adaptability, accuracy, and efficiency of mobile-compatible LLMs.</p> | |
| <h3>Why Compete?</h3> | |
| <p>Participating in this competition allows you to: | |
| <ul> | |
| <li>π Showcase your expertise in LLM development and optimization for mobile platforms.</li> | |
| <li>π Benchmark your modelβs performance against others in a highly competitive environment.</li> | |
| <li>π Contribute to advancements in AI for mobile technology, shaping the future of user-centric AI systems.</li> | |
| </ul></p> | |
| <h3>How It Works</h3> | |
| <ul> | |
| <li>1οΈβ£ <strong>Download the Dataset:</strong> Access the dataset and instructions on our | |
| <a href="https://github.com/your-github-repo" target="_blank">GitHub page</a>.</li> | |
| <li>2οΈβ£ <strong>Generate Predictions:</strong> Use your LLM to answer the dataset questions. | |
| Format your predictions as a CSV file.</li> | |
| <li>3οΈβ£ <strong>Submit Predictions:</strong> Upload your predictions on this platform.</li> | |
| <li>4οΈβ£ <strong>Evaluation:</strong> Submissions are scored based on accuracy.</li> | |
| <li>5οΈβ£ <strong>Leaderboard:</strong> View real-time rankings on the leaderboard.</li> | |
| </ul> | |
| </div> | |
| """) | |
| with gr.TabItem("π€ Submission"): | |
| with gr.Markdown(""" | |
| <div class="submission-section"> | |
| <h2>Submit Your Predictions</h2> | |
| <p>Upload your prediction file and provide your model name to evaluate and submit to the leaderboard.</p> | |
| </div> | |
| """): | |
| with gr.Row(elem_id="submission-fields"): | |
| file_input = gr.File(label="Upload Prediction CSV", file_types=[".csv"], interactive=True) | |
| model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name") | |
| with gr.Row(elem_id="submission-results"): | |
| overall_accuracy_display = gr.Number(label="Overall Accuracy", interactive=False) | |
| with gr.Row(elem_id="submission-buttons"): | |
| eval_button = gr.Button("Evaluate") | |
| submit_button = gr.Button("Prove and Submit to Leaderboard", visible=False) | |
| eval_status = gr.Textbox(label="Evaluation Status", interactive=False) | |
| # Define the functions outside the `with` block | |
| def handle_evaluation(file, model_name): | |
| # Check if required inputs are provided | |
| if not file: | |
| return "Error: Please upload a prediction file.", 0, gr.update(visible=False) | |
| if not model_name or model_name.strip() == "": | |
| return "Error: Please enter a model name.", 0, gr.update(visible=False) | |
| try: | |
| # Load predictions file | |
| predictions_df = pd.read_csv(file.name) | |
| # Validate required columns in the prediction file | |
| required_columns = ['question_id', 'predicted_answer'] | |
| missing_columns = [col for col in required_columns if col not in predictions_df.columns] | |
| if missing_columns: | |
| return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.", | |
| 0, gr.update(visible=False)) | |
| # Perform evaluation | |
| status, leaderboard = evaluate_predictions(file, model_name, add_to_leaderboard=False) | |
| if leaderboard.empty: | |
| overall_accuracy = 0 | |
| else: | |
| overall_accuracy = leaderboard.iloc[-1]["Overall Accuracy"] | |
| # Show the submit button after successful evaluation | |
| return status, overall_accuracy, gr.update(visible=True) | |
| except Exception as e: | |
| # Handle unexpected errors | |
| return f"Error during evaluation: {str(e)}", 0, gr.update(visible=False) | |
| def handle_submission(file, model_name): | |
| # Handle leaderboard submission | |
| status, _ = evaluate_predictions(file, model_name, add_to_leaderboard=True) | |
| return f"Submission to leaderboard completed: {status}" | |
| # Connect button clicks to the functions | |
| eval_button.click( | |
| handle_evaluation, | |
| inputs=[file_input, model_name_input], | |
| outputs=[eval_status, overall_accuracy_display, submit_button], | |
| ) | |
| submit_button.click( | |
| handle_submission, | |
| inputs=[file_input, model_name_input], | |
| outputs=[eval_status], | |
| ) | |
| with gr.TabItem("π Leaderboard"): | |
| leaderboard_table = gr.Dataframe( | |
| value=load_leaderboard(), | |
| label="Leaderboard", | |
| interactive=False, | |
| wrap=True, | |
| ) | |
| refresh_button = gr.Button("Refresh Leaderboard") | |
| refresh_button.click( | |
| lambda: load_leaderboard(), | |
| inputs=[], | |
| outputs=[leaderboard_table], | |
| ) | |
| # Post-Tabs Section | |
| gr.Markdown(""" | |
| <section class="post-tabs"> | |
| <h2>Ready to Compete?</h2> | |
| <h3> | |
| Submit your predictions today and make your mark in advancing mobile AI technologies. | |
| Show the world what your model can achieve! | |
| <h3> | |
| </section> | |
| """) | |
| # Footer Section | |
| gr.Markdown(""" | |
| <footer> | |
| <h2>Stay Connected</h2> | |
| <p> | |
| Follow us on social media or contact us for any queries. Let's shape the future of AI together! | |
| </p> | |
| <div class="social-links"> | |
| <a href="https://website.com" target="_blank" class="social-link">π Website</a> | |
| <a href="https://github.com/VILA-Lab/Mobile-MMLU" target="_blank" class="social-link">π GitHub</a> | |
| </div> | |
| </footer> | |
| """) | |
| demo.launch() | |