Update app.py
Browse files
app.py
CHANGED
|
@@ -40,17 +40,22 @@ except Exception as e:
|
|
| 40 |
# Initialize leaderboard file
|
| 41 |
leaderboard_file = "leaderboard.csv"
|
| 42 |
if not os.path.exists(leaderboard_file):
|
| 43 |
-
pd.DataFrame(columns=["submitter", "WER", "CER", "
|
| 44 |
else:
|
| 45 |
print(f"Loaded existing leaderboard with {len(pd.read_csv(leaderboard_file))} entries")
|
| 46 |
|
| 47 |
def normalize_text(text):
|
| 48 |
"""
|
| 49 |
-
Normalize text
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
"""
|
| 51 |
if not isinstance(text, str):
|
| 52 |
text = str(text)
|
| 53 |
|
|
|
|
| 54 |
text = text.lower()
|
| 55 |
|
| 56 |
# Remove punctuation, keeping spaces
|
|
@@ -62,15 +67,11 @@ def normalize_text(text):
|
|
| 62 |
return text
|
| 63 |
|
| 64 |
def calculate_metrics(predictions_df):
|
| 65 |
-
"""
|
| 66 |
-
|
| 67 |
-
Uses both standard average and length-weighted average.
|
| 68 |
-
"""
|
| 69 |
-
per_sample_metrics = []
|
| 70 |
total_ref_words = 0
|
| 71 |
total_ref_chars = 0
|
| 72 |
|
| 73 |
-
# Process each sample
|
| 74 |
for _, row in predictions_df.iterrows():
|
| 75 |
id_val = row["id"]
|
| 76 |
if id_val not in references:
|
|
@@ -80,25 +81,27 @@ def calculate_metrics(predictions_df):
|
|
| 80 |
reference = normalize_text(references[id_val])
|
| 81 |
hypothesis = normalize_text(row["text"])
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
if not reference or not hypothesis:
|
| 84 |
print(f"Warning: Empty reference or hypothesis for ID {id_val}")
|
| 85 |
continue
|
| 86 |
|
|
|
|
| 87 |
reference_words = reference.split()
|
|
|
|
| 88 |
reference_chars = list(reference)
|
| 89 |
|
| 90 |
-
|
| 91 |
-
if len(reference_words) < 2:
|
| 92 |
-
print(f"Warning: Reference too short for ID {id_val}, skipping")
|
| 93 |
-
continue
|
| 94 |
-
|
| 95 |
-
# Store sample info for debugging (first few samples)
|
| 96 |
-
if len(per_sample_metrics) < 5:
|
| 97 |
-
print(f"ID: {id_val}")
|
| 98 |
-
print(f"Reference: '{reference}'")
|
| 99 |
-
print(f"Hypothesis: '{hypothesis}'")
|
| 100 |
print(f"Reference words: {reference_words}")
|
|
|
|
| 101 |
|
|
|
|
| 102 |
try:
|
| 103 |
# Calculate WER and CER
|
| 104 |
sample_wer = wer(reference, hypothesis)
|
|
@@ -112,10 +115,10 @@ def calculate_metrics(predictions_df):
|
|
| 112 |
total_ref_words += len(reference_words)
|
| 113 |
total_ref_chars += len(reference_chars)
|
| 114 |
|
| 115 |
-
if len(
|
| 116 |
print(f"WER: {sample_wer}, CER: {sample_cer}")
|
| 117 |
-
|
| 118 |
-
|
| 119 |
"id": id_val,
|
| 120 |
"reference": reference,
|
| 121 |
"hypothesis": hypothesis,
|
|
@@ -127,91 +130,50 @@ def calculate_metrics(predictions_df):
|
|
| 127 |
except Exception as e:
|
| 128 |
print(f"Error calculating metrics for ID {id_val}: {str(e)}")
|
| 129 |
|
| 130 |
-
if not
|
| 131 |
raise ValueError("No valid samples for WER/CER calculation")
|
| 132 |
-
|
| 133 |
# Calculate standard average metrics
|
| 134 |
-
avg_wer = sum(item["wer"] for item in
|
| 135 |
-
avg_cer = sum(item["cer"] for item in
|
| 136 |
|
| 137 |
# Calculate weighted average metrics based on reference length
|
| 138 |
-
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in
|
| 139 |
-
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in
|
| 140 |
|
| 141 |
print(f"Simple average WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
|
| 142 |
print(f"Weighted average WER: {weighted_wer:.4f}, CER: {weighted_cer:.4f}")
|
| 143 |
-
print(f"Processed {len(
|
| 144 |
|
| 145 |
-
return avg_wer, avg_cer, weighted_wer, weighted_cer,
|
| 146 |
-
|
| 147 |
-
def styled_error(message):
|
| 148 |
-
"""Format error messages with red styling"""
|
| 149 |
-
return f"<div style='color: red; font-weight: bold; padding: 10px; border-radius: 5px; background-color: #ffe0e0;'>{message}</div>"
|
| 150 |
-
|
| 151 |
-
def styled_success(message):
|
| 152 |
-
"""Format success messages with green styling"""
|
| 153 |
-
return f"<div style='color: green; font-weight: bold; padding: 10px; border-radius: 5px; background-color: #e0ffe0;'>{message}</div>"
|
| 154 |
-
|
| 155 |
-
def styled_info(message):
|
| 156 |
-
"""Format informational messages with blue styling"""
|
| 157 |
-
return f"<div style='color: #004080; padding: 10px; border-radius: 5px; background-color: #e0f0ff;'>{message}</div>"
|
| 158 |
|
| 159 |
def process_submission(submitter_name, csv_file):
|
| 160 |
-
"""
|
| 161 |
-
Process a submission CSV, calculate metrics, and update the leaderboard.
|
| 162 |
-
Returns a status message and updated leaderboard.
|
| 163 |
-
"""
|
| 164 |
try:
|
| 165 |
-
# Validate submitter name
|
| 166 |
-
if not submitter_name or len(submitter_name.strip()) < 3:
|
| 167 |
-
return styled_error("Please provide a valid submitter name (at least 3 characters)"), None
|
| 168 |
-
|
| 169 |
# Read and validate the uploaded CSV
|
| 170 |
df = pd.read_csv(csv_file)
|
| 171 |
print(f"Processing submission from {submitter_name} with {len(df)} rows")
|
| 172 |
|
| 173 |
-
# Basic validation
|
| 174 |
if len(df) == 0:
|
| 175 |
-
return
|
| 176 |
-
|
| 177 |
-
if len(df) < 10:
|
| 178 |
-
return styled_error("Error: Submission contains too few samples (minimum 10 required)."), None
|
| 179 |
|
| 180 |
if set(df.columns) != {"id", "text"}:
|
| 181 |
-
return
|
| 182 |
|
| 183 |
if df["id"].duplicated().any():
|
| 184 |
dup_ids = df[df["id"].duplicated()]["id"].unique()
|
| 185 |
-
return
|
| 186 |
-
|
| 187 |
-
# Ensure text column contains strings
|
| 188 |
-
df["text"] = df["text"].astype(str)
|
| 189 |
-
|
| 190 |
-
# Check for valid references
|
| 191 |
-
if not references:
|
| 192 |
-
return styled_error("Error: Reference dataset could not be loaded. Please try again later."), None
|
| 193 |
|
| 194 |
# Check if IDs match the reference dataset
|
| 195 |
missing_ids = set(references.keys()) - set(df["id"])
|
| 196 |
extra_ids = set(df["id"]) - set(references.keys())
|
| 197 |
|
| 198 |
if missing_ids:
|
| 199 |
-
return
|
| 200 |
|
| 201 |
if extra_ids:
|
| 202 |
-
return
|
| 203 |
|
| 204 |
-
#
|
| 205 |
-
exact_matches = 0
|
| 206 |
-
for _, row in df.iterrows():
|
| 207 |
-
if normalize_text(row["text"]) == normalize_text(references[row["id"]]):
|
| 208 |
-
exact_matches += 1
|
| 209 |
-
|
| 210 |
-
exact_match_ratio = exact_matches / len(df)
|
| 211 |
-
if exact_match_ratio > 0.95: # If 95% exact matches, likely copying reference
|
| 212 |
-
return styled_error("Suspicious submission: Too many exact matches with reference texts."), None
|
| 213 |
-
|
| 214 |
-
# Calculate metrics
|
| 215 |
try:
|
| 216 |
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
|
| 217 |
|
|
@@ -221,119 +183,54 @@ def process_submission(submitter_name, csv_file):
|
|
| 221 |
print(f"Processed {len(detailed_results)} valid samples")
|
| 222 |
|
| 223 |
# Check for suspiciously low values
|
| 224 |
-
if avg_wer < 0.001
|
| 225 |
print("WARNING: WER is extremely low - likely an error")
|
| 226 |
-
return
|
| 227 |
|
| 228 |
except Exception as e:
|
| 229 |
print(f"Error in metrics calculation: {str(e)}")
|
| 230 |
-
return
|
| 231 |
|
| 232 |
# Update the leaderboard
|
| 233 |
leaderboard = pd.read_csv(leaderboard_file)
|
| 234 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 235 |
-
|
| 236 |
new_entry = pd.DataFrame(
|
| 237 |
-
[[submitter_name, avg_wer, avg_cer,
|
| 238 |
-
columns=["submitter", "WER", "CER", "
|
| 239 |
)
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
|
| 242 |
-
combined = pd.concat([leaderboard, new_entry])
|
| 243 |
-
# Sort by WER (ascending) and get first entry for each submitter
|
| 244 |
-
best_entries = combined.sort_values("WER").groupby("submitter").first().reset_index()
|
| 245 |
-
# Sort the resulting dataframe by WER
|
| 246 |
-
updated_leaderboard = best_entries.sort_values("WER")
|
| 247 |
-
updated_leaderboard.to_csv(leaderboard_file, index=False)
|
| 248 |
-
|
| 249 |
-
# Create detailed metrics summary
|
| 250 |
-
metrics_summary = f"""
|
| 251 |
-
<h3>Submission Results</h3>
|
| 252 |
-
<table>
|
| 253 |
-
<tr><td><b>Submitter:</b></td><td>{submitter_name}</td></tr>
|
| 254 |
-
<tr><td><b>Word Error Rate (WER):</b></td><td>{avg_wer:.4f}</td></tr>
|
| 255 |
-
<tr><td><b>Character Error Rate (CER):</b></td><td>{avg_cer:.4f}</td></tr>
|
| 256 |
-
<tr><td><b>Weighted WER:</b></td><td>{weighted_wer:.4f}</td></tr>
|
| 257 |
-
<tr><td><b>Weighted CER:</b></td><td>{weighted_cer:.4f}</td></tr>
|
| 258 |
-
<tr><td><b>Samples Evaluated:</b></td><td>{len(detailed_results)}</td></tr>
|
| 259 |
-
<tr><td><b>Submission Time:</b></td><td>{timestamp}</td></tr>
|
| 260 |
-
</table>
|
| 261 |
-
"""
|
| 262 |
-
|
| 263 |
-
return styled_success(f"Submission processed successfully!") + styled_info(metrics_summary), updated_leaderboard
|
| 264 |
|
| 265 |
except Exception as e:
|
| 266 |
print(f"Error processing submission: {str(e)}")
|
| 267 |
-
return
|
| 268 |
|
| 269 |
# Create the Gradio interface
|
| 270 |
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
| 271 |
gr.Markdown(
|
| 272 |
"""
|
| 273 |
# Bambara ASR Leaderboard
|
| 274 |
-
|
| 275 |
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
|
| 276 |
The 'id's must match those in the dataset.
|
| 277 |
|
| 278 |
-
|
| 279 |
-
- **
|
| 280 |
-
- **CER**: Character Error Rate (lower is better) - measures character-level accuracy
|
| 281 |
-
|
| 282 |
-
We report both standard averages and length-weighted averages (where longer samples have more influence on the final score).
|
| 283 |
"""
|
| 284 |
)
|
| 285 |
|
| 286 |
with gr.Row():
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
with gr.Column(scale=2):
|
| 299 |
-
with gr.Accordion("Submission Format", open=False):
|
| 300 |
-
gr.Markdown(
|
| 301 |
-
"""
|
| 302 |
-
### CSV Format Requirements
|
| 303 |
-
|
| 304 |
-
Your CSV file must:
|
| 305 |
-
- Have exactly two columns: `id` and `text`
|
| 306 |
-
- The `id` column must match the IDs in the reference dataset
|
| 307 |
-
- The `text` column should contain your model's transcriptions
|
| 308 |
-
|
| 309 |
-
Example:
|
| 310 |
-
```
|
| 311 |
-
id,text
|
| 312 |
-
audio_001,n ye foro ka taa
|
| 313 |
-
audio_002,i ni ce
|
| 314 |
-
```
|
| 315 |
-
|
| 316 |
-
### Evaluation Process
|
| 317 |
-
|
| 318 |
-
Your submissions are evaluated by:
|
| 319 |
-
1. Normalizing both reference and predicted text (lowercase, punctuation removal)
|
| 320 |
-
2. Calculating Word Error Rate (WER) and Character Error Rate (CER)
|
| 321 |
-
3. Computing both simple average and length-weighted average
|
| 322 |
-
4. Ranking on the leaderboard by WER (lower is better)
|
| 323 |
-
|
| 324 |
-
Only your best submission is kept on the leaderboard.
|
| 325 |
-
"""
|
| 326 |
-
)
|
| 327 |
-
|
| 328 |
-
output_msg = gr.HTML(label="Status")
|
| 329 |
-
|
| 330 |
-
# Leaderboard display
|
| 331 |
-
with gr.Accordion("Leaderboard", open=True):
|
| 332 |
-
leaderboard_display = gr.DataFrame(
|
| 333 |
-
label="Current Standings",
|
| 334 |
-
value=pd.read_csv(leaderboard_file),
|
| 335 |
-
interactive=False
|
| 336 |
-
)
|
| 337 |
|
| 338 |
submit_btn.click(
|
| 339 |
fn=process_submission,
|
|
|
|
| 40 |
# Initialize leaderboard file
|
| 41 |
leaderboard_file = "leaderboard.csv"
|
| 42 |
if not os.path.exists(leaderboard_file):
|
| 43 |
+
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
|
| 44 |
else:
|
| 45 |
print(f"Loaded existing leaderboard with {len(pd.read_csv(leaderboard_file))} entries")
|
| 46 |
|
| 47 |
def normalize_text(text):
|
| 48 |
"""
|
| 49 |
+
Normalize text for WER/CER calculation:
|
| 50 |
+
- Convert to lowercase
|
| 51 |
+
- Remove punctuation
|
| 52 |
+
- Replace multiple spaces with single space
|
| 53 |
+
- Strip leading/trailing spaces
|
| 54 |
"""
|
| 55 |
if not isinstance(text, str):
|
| 56 |
text = str(text)
|
| 57 |
|
| 58 |
+
# Convert to lowercase
|
| 59 |
text = text.lower()
|
| 60 |
|
| 61 |
# Remove punctuation, keeping spaces
|
|
|
|
| 67 |
return text
|
| 68 |
|
| 69 |
def calculate_metrics(predictions_df):
|
| 70 |
+
"""Calculate WER and CER for predictions."""
|
| 71 |
+
results = []
|
|
|
|
|
|
|
|
|
|
| 72 |
total_ref_words = 0
|
| 73 |
total_ref_chars = 0
|
| 74 |
|
|
|
|
| 75 |
for _, row in predictions_df.iterrows():
|
| 76 |
id_val = row["id"]
|
| 77 |
if id_val not in references:
|
|
|
|
| 81 |
reference = normalize_text(references[id_val])
|
| 82 |
hypothesis = normalize_text(row["text"])
|
| 83 |
|
| 84 |
+
# Print detailed info for first few entries
|
| 85 |
+
if len(results) < 5:
|
| 86 |
+
print(f"ID: {id_val}")
|
| 87 |
+
print(f"Reference: '{reference}'")
|
| 88 |
+
print(f"Hypothesis: '{hypothesis}'")
|
| 89 |
+
|
| 90 |
+
# Skip empty strings
|
| 91 |
if not reference or not hypothesis:
|
| 92 |
print(f"Warning: Empty reference or hypothesis for ID {id_val}")
|
| 93 |
continue
|
| 94 |
|
| 95 |
+
# Split into words for jiwer
|
| 96 |
reference_words = reference.split()
|
| 97 |
+
hypothesis_words = hypothesis.split()
|
| 98 |
reference_chars = list(reference)
|
| 99 |
|
| 100 |
+
if len(results) < 5:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
print(f"Reference words: {reference_words}")
|
| 102 |
+
print(f"Hypothesis words: {hypothesis_words}")
|
| 103 |
|
| 104 |
+
# Calculate metrics
|
| 105 |
try:
|
| 106 |
# Calculate WER and CER
|
| 107 |
sample_wer = wer(reference, hypothesis)
|
|
|
|
| 115 |
total_ref_words += len(reference_words)
|
| 116 |
total_ref_chars += len(reference_chars)
|
| 117 |
|
| 118 |
+
if len(results) < 5:
|
| 119 |
print(f"WER: {sample_wer}, CER: {sample_cer}")
|
| 120 |
+
|
| 121 |
+
results.append({
|
| 122 |
"id": id_val,
|
| 123 |
"reference": reference,
|
| 124 |
"hypothesis": hypothesis,
|
|
|
|
| 130 |
except Exception as e:
|
| 131 |
print(f"Error calculating metrics for ID {id_val}: {str(e)}")
|
| 132 |
|
| 133 |
+
if not results:
|
| 134 |
raise ValueError("No valid samples for WER/CER calculation")
|
| 135 |
+
|
| 136 |
# Calculate standard average metrics
|
| 137 |
+
avg_wer = sum(item["wer"] for item in results) / len(results)
|
| 138 |
+
avg_cer = sum(item["cer"] for item in results) / len(results)
|
| 139 |
|
| 140 |
# Calculate weighted average metrics based on reference length
|
| 141 |
+
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words
|
| 142 |
+
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars
|
| 143 |
|
| 144 |
print(f"Simple average WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
|
| 145 |
print(f"Weighted average WER: {weighted_wer:.4f}, CER: {weighted_cer:.4f}")
|
| 146 |
+
print(f"Processed {len(results)} valid samples")
|
| 147 |
|
| 148 |
+
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
def process_submission(submitter_name, csv_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
# Read and validate the uploaded CSV
|
| 153 |
df = pd.read_csv(csv_file)
|
| 154 |
print(f"Processing submission from {submitter_name} with {len(df)} rows")
|
| 155 |
|
|
|
|
| 156 |
if len(df) == 0:
|
| 157 |
+
return "Error: Uploaded CSV is empty.", None
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
if set(df.columns) != {"id", "text"}:
|
| 160 |
+
return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None
|
| 161 |
|
| 162 |
if df["id"].duplicated().any():
|
| 163 |
dup_ids = df[df["id"].duplicated()]["id"].unique()
|
| 164 |
+
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
# Check if IDs match the reference dataset
|
| 167 |
missing_ids = set(references.keys()) - set(df["id"])
|
| 168 |
extra_ids = set(df["id"]) - set(references.keys())
|
| 169 |
|
| 170 |
if missing_ids:
|
| 171 |
+
return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None
|
| 172 |
|
| 173 |
if extra_ids:
|
| 174 |
+
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
|
| 175 |
|
| 176 |
+
# Calculate WER and CER
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
try:
|
| 178 |
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
|
| 179 |
|
|
|
|
| 183 |
print(f"Processed {len(detailed_results)} valid samples")
|
| 184 |
|
| 185 |
# Check for suspiciously low values
|
| 186 |
+
if avg_wer < 0.001:
|
| 187 |
print("WARNING: WER is extremely low - likely an error")
|
| 188 |
+
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
|
| 189 |
|
| 190 |
except Exception as e:
|
| 191 |
print(f"Error in metrics calculation: {str(e)}")
|
| 192 |
+
return f"Error calculating metrics: {str(e)}", None
|
| 193 |
|
| 194 |
# Update the leaderboard
|
| 195 |
leaderboard = pd.read_csv(leaderboard_file)
|
| 196 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
| 197 |
new_entry = pd.DataFrame(
|
| 198 |
+
[[submitter_name, avg_wer, avg_cer, timestamp]],
|
| 199 |
+
columns=["submitter", "WER", "CER", "timestamp"]
|
| 200 |
)
|
| 201 |
+
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
|
| 202 |
+
leaderboard.to_csv(leaderboard_file, index=False)
|
| 203 |
|
| 204 |
+
return f"Submission processed successfully! WER: {avg_wer:.4f}, CER: {avg_cer:.4f}", leaderboard
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
except Exception as e:
|
| 207 |
print(f"Error processing submission: {str(e)}")
|
| 208 |
+
return f"Error processing submission: {str(e)}", None
|
| 209 |
|
| 210 |
# Create the Gradio interface
|
| 211 |
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
| 212 |
gr.Markdown(
|
| 213 |
"""
|
| 214 |
# Bambara ASR Leaderboard
|
|
|
|
| 215 |
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
|
| 216 |
The 'id's must match those in the dataset.
|
| 217 |
|
| 218 |
+
- **WER**: Word Error Rate (lower is better).
|
| 219 |
+
- **CER**: Character Error Rate (lower is better).
|
|
|
|
|
|
|
|
|
|
| 220 |
"""
|
| 221 |
)
|
| 222 |
|
| 223 |
with gr.Row():
|
| 224 |
+
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
|
| 225 |
+
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
|
| 226 |
+
|
| 227 |
+
submit_btn = gr.Button("Submit")
|
| 228 |
+
output_msg = gr.Textbox(label="Status", interactive=False)
|
| 229 |
+
leaderboard_display = gr.DataFrame(
|
| 230 |
+
label="Leaderboard",
|
| 231 |
+
value=pd.read_csv(leaderboard_file),
|
| 232 |
+
interactive=False
|
| 233 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
submit_btn.click(
|
| 236 |
fn=process_submission,
|