Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from jiwer import wer, cer, transforms
|
| 5 |
+
import os
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
transform = transforms.Compose([
|
| 10 |
+
transforms.RemovePunctuation(),
|
| 11 |
+
transforms.ToLowerCase(),
|
| 12 |
+
transforms.RemoveWhiteSpace(replace_by_space=True),
|
| 13 |
+
])
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
|
| 17 |
+
references = {row["id"]: row["text"] for row in dataset}
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
leaderboard_file = "leaderboard.csv"
|
| 21 |
+
if not os.path.exists(leaderboard_file):
|
| 22 |
+
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
|
| 23 |
+
|
| 24 |
+
def process_submission(submitter_name, csv_file):
|
| 25 |
+
|
| 26 |
+
try:
|
| 27 |
+
# Read and validate the uploaded CSV
|
| 28 |
+
df = pd.read_csv(csv_file)
|
| 29 |
+
if set(df.columns) != {"id", "prediction"}:
|
| 30 |
+
return "Error: CSV must contain exactly 'id' and 'prediction' columns.", None
|
| 31 |
+
if df["id"].duplicated().any():
|
| 32 |
+
return "Error: Duplicate 'id's found in the CSV.", None
|
| 33 |
+
if set(df["id"]) != set(references.keys()):
|
| 34 |
+
return "Error: CSV 'id's must match the dataset 'id's.", None
|
| 35 |
+
|
| 36 |
+
# Calculate WER and CER for each prediction
|
| 37 |
+
wers, cers = [], []
|
| 38 |
+
for _, row in df.iterrows():
|
| 39 |
+
ref = references[row["id"]]
|
| 40 |
+
pred = row["prediction"]
|
| 41 |
+
wers.append(wer(ref, pred, standardize=transform))
|
| 42 |
+
cers.append(cer(ref, pred, standardize=transform))
|
| 43 |
+
|
| 44 |
+
# Compute average WER and CER
|
| 45 |
+
avg_wer = sum(wers) / len(wers)
|
| 46 |
+
avg_cer = sum(cers) / len(cers)
|
| 47 |
+
|
| 48 |
+
# Update the leaderboard
|
| 49 |
+
leaderboard = pd.read_csv(leaderboard_file)
|
| 50 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 51 |
+
new_entry = pd.DataFrame(
|
| 52 |
+
[[submitter_name, avg_wer, avg_cer, timestamp]],
|
| 53 |
+
columns=["submitter", "WER", "CER", "timestamp"]
|
| 54 |
+
)
|
| 55 |
+
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
|
| 56 |
+
leaderboard.to_csv(leaderboard_file, index=False)
|
| 57 |
+
|
| 58 |
+
return "Submission processed successfully!", leaderboard
|
| 59 |
+
except Exception as e:
|
| 60 |
+
return f"Error processing submission: {str(e)}", None
|
| 61 |
+
|
| 62 |
+
# Create the Gradio interface
|
| 63 |
+
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
| 64 |
+
gr.Markdown(
|
| 65 |
+
"""
|
| 66 |
+
# Bambara ASR Leaderboard
|
| 67 |
+
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
|
| 68 |
+
The 'id's must match those in the dataset.
|
| 69 |
+
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset).
|
| 70 |
+
|
| 71 |
+
- **WER**: Word Error Rate (lower is better).
|
| 72 |
+
- **CER**: Character Error Rate (lower is better).
|
| 73 |
+
"""
|
| 74 |
+
)
|
| 75 |
+
with gr.Row():
|
| 76 |
+
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
|
| 77 |
+
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
|
| 78 |
+
submit_btn = gr.Button("Submit")
|
| 79 |
+
output_msg = gr.Textbox(label="Status", interactive=False)
|
| 80 |
+
leaderboard_display = gr.DataFrame(
|
| 81 |
+
label="Leaderboard",
|
| 82 |
+
value=pd.read_csv(leaderboard_file),
|
| 83 |
+
interactive=False
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
submit_btn.click(
|
| 87 |
+
fn=process_submission,
|
| 88 |
+
inputs=[submitter, csv_upload],
|
| 89 |
+
outputs=[output_msg, leaderboard_display]
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
demo.launch()
|