import os from huggingface_hub import login from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr # Autenticar usando el token almacenado como secreto hf_token = os.getenv("HF_API_TOKEN") login(hf_token) # Cargar el modelo y el tokenizador model_name = "DeepESP/gpt2-spanish" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def chat_with_gpt2_spanish(input_text): inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512) outputs = model.generate(**inputs, max_length=200, num_beams=4, early_stopping=True) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Crear la interfaz con Gradio iface = gr.Interface( fn=chat_with_gpt2_spanish, inputs="text", outputs="text", title="Chat con GPT-2 en Español", description="Interfaz simple para comunicarte con el modelo GPT-2 en español." ) iface.launch()