import pydiffvg import torch import skimage import numpy as np # Use GPU if available pydiffvg.set_use_gpu(torch.cuda.is_available()) canvas_width, canvas_height = 256, 256 # https://www.w3schools.com/graphics/svg_polygon.asp points = torch.tensor([[120.0, 30.0], [ 60.0, 218.0], [210.0, 98.0], [ 30.0, 98.0], [180.0, 218.0]]) polygon = pydiffvg.Polygon(points = points, is_closed = True) shapes = [polygon] polygon_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0])) shape_groups = [polygon_group] scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) render = pydiffvg.RenderFunction.apply img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 0, # seed None, # background_image *scene_args) # The output image is in linear RGB space. Do Gamma correction before saving the image. pydiffvg.imwrite(img.cpu(), 'results/single_polygon/target.png', gamma=2.2) target = img.clone() # Move the polygon to produce initial guess # normalize points for easier learning rate points_n = torch.tensor([[140.0 / 256.0, 20.0 / 256.0], [ 65.0 / 256.0, 228.0 / 256.0], [215.0 / 256.0, 100.0 / 256.0], [ 35.0 / 256.0, 90.0 / 256.0], [160.0 / 256.0, 208.0 / 256.0]], requires_grad=True) color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True) polygon.points = points_n * 256 polygon_group.color = color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 1, # seed None, # background_image *scene_args) pydiffvg.imwrite(img.cpu(), 'results/single_polygon/init.png', gamma=2.2) # Optimize for radius & center optimizer = torch.optim.Adam([points_n, color], lr=1e-2) # Run 100 Adam iterations. for t in range(100): print('iteration:', t) optimizer.zero_grad() # Forward pass: render the image. polygon.points = points_n * 256 polygon_group.color = color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y t+1, # seed None, # background_image *scene_args) # Save the intermediate render. pydiffvg.imwrite(img.cpu(), 'results/single_polygon/iter_{}.png'.format(t), gamma=2.2) # Compute the loss function. Here it is L2. loss = (img - target).pow(2).sum() print('loss:', loss.item()) # Backpropagate the gradients. loss.backward() # Print the gradients print('points_n.grad:', points_n.grad) print('color.grad:', color.grad) # Take a gradient descent step. optimizer.step() # Print the current params. print('points:', polygon.points) print('color:', polygon_group.fill_color) # Render the final result. polygon.points = points_n * 256 polygon_group.color = color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 102, # seed None, # background_image *scene_args) # Save the images and differences. pydiffvg.imwrite(img.cpu(), 'results/single_polygon/final.png') # Convert the intermediate renderings to a video. from subprocess import call call(["ffmpeg", "-framerate", "24", "-i", "results/single_polygon/iter_%d.png", "-vb", "20M", "results/single_polygon/out.mp4"])