import pydiffvg import torch import skimage import numpy as np # Use GPU if available pydiffvg.set_use_gpu(torch.cuda.is_available()) canvas_width, canvas_height = 256, 256 num_control_points = torch.tensor([2, 2, 2]) points = torch.tensor([[120.0, 30.0], # base [150.0, 60.0], # control point [ 90.0, 198.0], # control point [ 60.0, 218.0], # base [ 90.0, 180.0], # control point [200.0, 65.0], # control point [210.0, 98.0], # base [220.0, 70.0], # control point [130.0, 55.0]]) # control point path = pydiffvg.Path(num_control_points = num_control_points, points = points, is_closed = True) shapes = [path] path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0])) shape_groups = [path_group] scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) render = pydiffvg.RenderFunction.apply img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 0, # seed None, *scene_args) # The output image is in linear RGB space. Do Gamma correction before saving the image. pydiffvg.imwrite(img.cpu(), 'results/single_curve/target.png', gamma=2.2) target = img.clone() # Move the path to produce initial guess # normalize points for easier learning rate points_n = torch.tensor([[100.0/256.0, 40.0/256.0], # base [155.0/256.0, 65.0/256.0], # control point [100.0/256.0, 180.0/256.0], # control point [ 65.0/256.0, 238.0/256.0], # base [100.0/256.0, 200.0/256.0], # control point [170.0/256.0, 55.0/256.0], # control point [220.0/256.0, 100.0/256.0], # base [210.0/256.0, 80.0/256.0], # control point [140.0/256.0, 60.0/256.0]], # control point requires_grad = True) color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True) path.points = points_n * 256 path_group.fill_color = color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 1, # seed None, *scene_args) pydiffvg.imwrite(img.cpu(), 'results/single_curve/init.png', gamma=2.2) # Optimize optimizer = torch.optim.Adam([points_n, color], lr=1e-2) # Run 100 Adam iterations. for t in range(100): print('iteration:', t) optimizer.zero_grad() # Forward pass: render the image. path.points = points_n * 256 path_group.fill_color = color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y t+1, # seed None, *scene_args) # Save the intermediate render. pydiffvg.imwrite(img.cpu(), 'results/single_curve/iter_{}.png'.format(t), gamma=2.2) # Compute the loss function. Here it is L2. loss = (img - target).pow(2).sum() print('loss:', loss.item()) # Backpropagate the gradients. loss.backward() # Print the gradients print('points_n.grad:', points_n.grad) print('color.grad:', color.grad) # Take a gradient descent step. optimizer.step() # Print the current params. print('points:', path.points) print('color:', path_group.fill_color) # Render the final result. scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(256, # width 256, # height 2, # num_samples_x 2, # num_samples_y 102, # seed None, *scene_args) # Save the images and differences. pydiffvg.imwrite(img.cpu(), 'results/single_curve/final.png') # Convert the intermediate renderings to a video. from subprocess import call call(["ffmpeg", "-framerate", "24", "-i", "results/single_curve/iter_%d.png", "-vb", "20M", "results/single_curve/out.mp4"])