import pydiffvg import torch import skimage # Use GPU if available pydiffvg.set_use_gpu(torch.cuda.is_available()) canvas_width, canvas_height = 510, 510 # https://www.flaticon.com/free-icon/black-plane_61212#term=airplane&page=1&position=8 shapes = pydiffvg.from_svg_path('M510,255c0-20.4-17.85-38.25-38.25-38.25H331.5L204,12.75h-51l63.75,204H76.5l-38.25-51H0L25.5,255L0,344.25h38.25l38.25-51h140.25l-63.75,204h51l127.5-204h140.25C492.15,293.25,510,275.4,510,255z') path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0])) shape_groups = [path_group] scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) render = pydiffvg.RenderFunction.apply img = render(510, # width 510, # height 2, # num_samples_x 2, # num_samples_y 0, # seed None, # background_image *scene_args) # The output image is in linear RGB space. Do Gamma correction before saving the image. pydiffvg.imwrite(img.cpu(), 'results/single_path/target.png', gamma=2.2) target = img.clone() # Move the path to produce initial guess # normalize points for easier learning rate noise = torch.FloatTensor(shapes[0].points.shape).uniform_(0.0, 1.0) points_n = (shapes[0].points.clone() + (noise * 60 - 30)) / 510.0 points_n.requires_grad = True color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True) shapes[0].points = points_n * 510 path_group.fill_color = color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(510, # width 510, # height 2, # num_samples_x 2, # num_samples_y 1, # seed None, # background_image *scene_args) pydiffvg.imwrite(img.cpu(), 'results/single_path/init.png', gamma=2.2) # Optimize optimizer = torch.optim.Adam([points_n, color], lr=1e-2) # Run 100 Adam iterations. for t in range(100): print('iteration:', t) optimizer.zero_grad() # Forward pass: render the image. shapes[0].points = points_n * 510 path_group.fill_color = color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(510, # width 510, # height 2, # num_samples_x 2, # num_samples_y t+1, # seed None, # background_image *scene_args) # Save the intermediate render. pydiffvg.imwrite(img.cpu(), 'results/single_path/iter_{:02}.png'.format(t), gamma=2.2) # Compute the loss function. Here it is L2. loss = (img - target).pow(2).sum() print('loss:', loss.item()) # Backpropagate the gradients. loss.backward() # Print the gradients print('points_n.grad:', points_n.grad) print('color.grad:', color.grad) # Take a gradient descent step. optimizer.step() # Print the current params. print('points:', shapes[0].points) print('color:', path_group.fill_color) # Render the final result. shapes[0].points = points_n * 510 path_group.fill_color = color scene_args = pydiffvg.RenderFunction.serialize_scene(\ canvas_width, canvas_height, shapes, shape_groups) img = render(510, # width 510, # height 2, # num_samples_x 2, # num_samples_y 102, # seed None, # background_image *scene_args) # Save the images and differences. pydiffvg.imwrite(img.cpu(), 'results/single_path/final.png') # Convert the intermediate renderings to a video. from subprocess import call call(["ffmpeg", "-framerate", "20", "-i", "results/single_path/iter_%02d.png", "-vb", "20M", "results/single_path/out.mp4"])