Spaces:
Sleeping
Sleeping
import pydiffvg | |
import torch | |
import skimage | |
import numpy as np | |
# Use GPU if available | |
pydiffvg.set_use_gpu(torch.cuda.is_available()) | |
canvas_width = 256 | |
canvas_height = 256 | |
circle = pydiffvg.Circle(radius = torch.tensor(40.0), | |
center = torch.tensor([128.0, 128.0])) | |
shapes = [circle] | |
circle_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), | |
fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0])) | |
shape_groups = [circle_group] | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups, | |
output_type = pydiffvg.OutputType.sdf) | |
render = pydiffvg.RenderFunction.apply | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
img = img / 256 # Normalize SDF to [0, 1] | |
pydiffvg.imwrite(img.cpu(), 'results/test_eval_positions/target.png') | |
target = img.clone() | |
# Move the circle to produce initial guess | |
# normalize radius & center for easier learning rate | |
radius_n = torch.tensor(20.0 / 256.0, requires_grad=True) | |
center_n = torch.tensor([108.0 / 256.0, 138.0 / 256.0], requires_grad=True) | |
color = torch.tensor([0.3, 0.2, 0.8, 1.0], requires_grad=True) | |
circle.radius = radius_n * 256 | |
circle.center = center_n * 256 | |
circle_group.fill_color = color | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups, | |
output_type = pydiffvg.OutputType.sdf) | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
1, # seed | |
None, # background_image | |
*scene_args) | |
img = img / 256 # Normalize SDF to [0, 1] | |
pydiffvg.imwrite(img.cpu(), 'results/test_eval_positions/init.png') | |
# Optimize for radius & center | |
optimizer = torch.optim.Adam([radius_n, center_n, color], lr=1e-2) | |
# Run 200 Adam iterations. | |
for t in range(200): | |
print('iteration:', t) | |
optimizer.zero_grad() | |
# Forward pass: render the image. | |
circle.radius = radius_n * 256 | |
circle.center = center_n * 256 | |
circle_group.fill_color = color | |
# Evaluate 1000 positions | |
eval_positions = torch.rand(1000, 2).to(img.device) * 256 | |
# for grid_sample() | |
grid_eval_positions = (eval_positions / 256.0) * 2.0 - 1.0 | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups, | |
output_type = pydiffvg.OutputType.sdf, | |
eval_positions = eval_positions) | |
samples = render(256, # width | |
256, # height | |
0, # num_samples_x | |
0, # num_samples_y | |
t+1, # seed | |
None, # background_image | |
*scene_args) | |
samples = samples / 256 # Normalize SDF to [0, 1] | |
target_sampled = torch.nn.functional.grid_sample(\ | |
target.view(1, 1, target.shape[0], target.shape[1]), | |
grid_eval_positions.view(1, -1, 1, 2), mode='nearest') | |
loss = (samples - target_sampled).pow(2).mean() | |
print('loss:', loss.item()) | |
# Backpropagate the gradients. | |
loss.backward() | |
# Print the gradients | |
print('radius.grad:', radius_n.grad) | |
print('center.grad:', center_n.grad) | |
print('color.grad:', color.grad) | |
# Take a gradient descent step. | |
optimizer.step() | |
# Print the current params. | |
print('radius:', circle.radius) | |
print('center:', circle.center) | |
print('color:', circle_group.fill_color) | |
# Render the final result. | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups, | |
output_type = pydiffvg.OutputType.sdf) | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
102, # seed | |
None, # background_image | |
*scene_args) | |
img = img / 256 # Normalize SDF to [0, 1] | |
# Save the images and differences. | |
pydiffvg.imwrite(img.cpu(), 'results/test_eval_positions/final.png') | |