Textured_Word_Illustration / diffvg /apps /test_eval_positions.py
M3000j's picture
Upload folder using huggingface_hub
31726e5 verified
import pydiffvg
import torch
import skimage
import numpy as np
# Use GPU if available
pydiffvg.set_use_gpu(torch.cuda.is_available())
canvas_width = 256
canvas_height = 256
circle = pydiffvg.Circle(radius = torch.tensor(40.0),
center = torch.tensor([128.0, 128.0]))
shapes = [circle]
circle_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]),
fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0]))
shape_groups = [circle_group]
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups,
output_type = pydiffvg.OutputType.sdf)
render = pydiffvg.RenderFunction.apply
img = render(256, # width
256, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None, # background_image
*scene_args)
img = img / 256 # Normalize SDF to [0, 1]
pydiffvg.imwrite(img.cpu(), 'results/test_eval_positions/target.png')
target = img.clone()
# Move the circle to produce initial guess
# normalize radius & center for easier learning rate
radius_n = torch.tensor(20.0 / 256.0, requires_grad=True)
center_n = torch.tensor([108.0 / 256.0, 138.0 / 256.0], requires_grad=True)
color = torch.tensor([0.3, 0.2, 0.8, 1.0], requires_grad=True)
circle.radius = radius_n * 256
circle.center = center_n * 256
circle_group.fill_color = color
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups,
output_type = pydiffvg.OutputType.sdf)
img = render(256, # width
256, # height
2, # num_samples_x
2, # num_samples_y
1, # seed
None, # background_image
*scene_args)
img = img / 256 # Normalize SDF to [0, 1]
pydiffvg.imwrite(img.cpu(), 'results/test_eval_positions/init.png')
# Optimize for radius & center
optimizer = torch.optim.Adam([radius_n, center_n, color], lr=1e-2)
# Run 200 Adam iterations.
for t in range(200):
print('iteration:', t)
optimizer.zero_grad()
# Forward pass: render the image.
circle.radius = radius_n * 256
circle.center = center_n * 256
circle_group.fill_color = color
# Evaluate 1000 positions
eval_positions = torch.rand(1000, 2).to(img.device) * 256
# for grid_sample()
grid_eval_positions = (eval_positions / 256.0) * 2.0 - 1.0
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups,
output_type = pydiffvg.OutputType.sdf,
eval_positions = eval_positions)
samples = render(256, # width
256, # height
0, # num_samples_x
0, # num_samples_y
t+1, # seed
None, # background_image
*scene_args)
samples = samples / 256 # Normalize SDF to [0, 1]
target_sampled = torch.nn.functional.grid_sample(\
target.view(1, 1, target.shape[0], target.shape[1]),
grid_eval_positions.view(1, -1, 1, 2), mode='nearest')
loss = (samples - target_sampled).pow(2).mean()
print('loss:', loss.item())
# Backpropagate the gradients.
loss.backward()
# Print the gradients
print('radius.grad:', radius_n.grad)
print('center.grad:', center_n.grad)
print('color.grad:', color.grad)
# Take a gradient descent step.
optimizer.step()
# Print the current params.
print('radius:', circle.radius)
print('center:', circle.center)
print('color:', circle_group.fill_color)
# Render the final result.
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups,
output_type = pydiffvg.OutputType.sdf)
img = render(256, # width
256, # height
2, # num_samples_x
2, # num_samples_y
102, # seed
None, # background_image
*scene_args)
img = img / 256 # Normalize SDF to [0, 1]
# Save the images and differences.
pydiffvg.imwrite(img.cpu(), 'results/test_eval_positions/final.png')