Spaces:
Sleeping
Sleeping
import pydiffvg | |
import torch | |
import skimage | |
import numpy as np | |
# Use GPU if available | |
pydiffvg.set_use_gpu(torch.cuda.is_available()) | |
canvas_width, canvas_height = 256 ,256 | |
rect = pydiffvg.Rect(p_min = torch.tensor([40.0, 40.0]), | |
p_max = torch.tensor([160.0, 160.0])) | |
shapes = [rect] | |
rect_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), | |
fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0])) | |
shape_groups = [rect_group] | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
render = pydiffvg.RenderFunction.apply | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
# The output image is in linear RGB space. Do Gamma correction before saving the image. | |
pydiffvg.imwrite(img.cpu(), 'results/single_rect/target.png', gamma=2.2) | |
target = img.clone() | |
# Move the rect to produce initial guess | |
# normalize p_min & p_max for easier learning rate | |
p_min_n = torch.tensor([80.0 / 256.0, 20.0 / 256.0], requires_grad=True) | |
p_max_n = torch.tensor([100.0 / 256.0, 60.0 / 256.0], requires_grad=True) | |
color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True) | |
rect.p_min = p_min_n * 256 | |
rect.p_max = p_max_n * 256 | |
rect_group.fill_color = color | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
1, # seed | |
None, # background_image | |
*scene_args) | |
pydiffvg.imwrite(img.cpu(), 'results/single_rect/init.png', gamma=2.2) | |
# Optimize for radius & center | |
optimizer = torch.optim.Adam([p_min_n, p_max_n, color], lr=1e-2) | |
# Run 100 Adam iterations. | |
for t in range(100): | |
print('iteration:', t) | |
optimizer.zero_grad() | |
# Forward pass: render the image. | |
rect.p_min = p_min_n * 256 | |
rect.p_max = p_max_n * 256 | |
rect_group.fill_color = color | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
t+1, # seed | |
None, # background_image | |
*scene_args) | |
# Save the intermediate render. | |
pydiffvg.imwrite(img.cpu(), 'results/single_rect/iter_{}.png'.format(t), gamma=2.2) | |
# Compute the loss function. Here it is L2. | |
loss = (img - target).pow(2).sum() | |
print('loss:', loss.item()) | |
# Backpropagate the gradients. | |
loss.backward() | |
# Print the gradients | |
print('p_min.grad:', p_min_n.grad) | |
print('p_max.grad:', p_max_n.grad) | |
print('color.grad:', color.grad) | |
# Take a gradient descent step. | |
optimizer.step() | |
# Print the current params. | |
print('p_min:', rect.p_min) | |
print('p_max:', rect.p_max) | |
print('color:', rect_group.fill_color) | |
# Render the final result. | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
102, # seed | |
None, # background_image | |
*scene_args) | |
# Save the images and differences. | |
pydiffvg.imwrite(img.cpu(), 'results/single_rect/final.png') | |
# Convert the intermediate renderings to a video. | |
from subprocess import call | |
call(["ffmpeg", "-framerate", "24", "-i", | |
"results/single_rect/iter_%d.png", "-vb", "20M", | |
"results/single_rect/out.mp4"]) | |