Spaces:
Sleeping
Sleeping
import pydiffvg | |
import torch | |
import skimage | |
import numpy as np | |
# Use GPU if available | |
pydiffvg.set_use_gpu(torch.cuda.is_available()) | |
canvas_width, canvas_height = 256, 256 | |
# https://www.w3schools.com/graphics/svg_polygon.asp | |
points = torch.tensor([[120.0, 30.0], | |
[ 60.0, 218.0], | |
[210.0, 98.0], | |
[ 30.0, 98.0], | |
[180.0, 218.0]]) | |
polygon = pydiffvg.Polygon(points = points, is_closed = True) | |
shapes = [polygon] | |
polygon_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), | |
fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0])) | |
shape_groups = [polygon_group] | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
render = pydiffvg.RenderFunction.apply | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
# The output image is in linear RGB space. Do Gamma correction before saving the image. | |
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/target.png', gamma=2.2) | |
target = img.clone() | |
# Move the polygon to produce initial guess | |
# normalize points for easier learning rate | |
points_n = torch.tensor([[140.0 / 256.0, 20.0 / 256.0], | |
[ 65.0 / 256.0, 228.0 / 256.0], | |
[215.0 / 256.0, 100.0 / 256.0], | |
[ 35.0 / 256.0, 90.0 / 256.0], | |
[160.0 / 256.0, 208.0 / 256.0]], requires_grad=True) | |
color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True) | |
polygon.points = points_n * 256 | |
polygon_group.color = color | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
1, # seed | |
None, # background_image | |
*scene_args) | |
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/init.png', gamma=2.2) | |
# Optimize for radius & center | |
optimizer = torch.optim.Adam([points_n, color], lr=1e-2) | |
# Run 100 Adam iterations. | |
for t in range(100): | |
print('iteration:', t) | |
optimizer.zero_grad() | |
# Forward pass: render the image. | |
polygon.points = points_n * 256 | |
polygon_group.color = color | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
t+1, # seed | |
None, # background_image | |
*scene_args) | |
# Save the intermediate render. | |
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/iter_{}.png'.format(t), gamma=2.2) | |
# Compute the loss function. Here it is L2. | |
loss = (img - target).pow(2).sum() | |
print('loss:', loss.item()) | |
# Backpropagate the gradients. | |
loss.backward() | |
# Print the gradients | |
print('points_n.grad:', points_n.grad) | |
print('color.grad:', color.grad) | |
# Take a gradient descent step. | |
optimizer.step() | |
# Print the current params. | |
print('points:', polygon.points) | |
print('color:', polygon_group.fill_color) | |
# Render the final result. | |
polygon.points = points_n * 256 | |
polygon_group.color = color | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
102, # seed | |
None, # background_image | |
*scene_args) | |
# Save the images and differences. | |
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/final.png') | |
# Convert the intermediate renderings to a video. | |
from subprocess import call | |
call(["ffmpeg", "-framerate", "24", "-i", | |
"results/single_polygon/iter_%d.png", "-vb", "20M", | |
"results/single_polygon/out.mp4"]) | |