M3000j's picture
Upload folder using huggingface_hub
31726e5 verified
import pydiffvg
import torch
import skimage
import numpy as np
# Use GPU if available
pydiffvg.set_use_gpu(torch.cuda.is_available())
canvas_width, canvas_height = 256, 256
# https://www.w3schools.com/graphics/svg_polygon.asp
points = torch.tensor([[120.0, 30.0],
[ 60.0, 218.0],
[210.0, 98.0],
[ 30.0, 98.0],
[180.0, 218.0]])
polygon = pydiffvg.Polygon(points = points, is_closed = True)
shapes = [polygon]
polygon_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]),
fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0]))
shape_groups = [polygon_group]
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
render = pydiffvg.RenderFunction.apply
img = render(256, # width
256, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None, # background_image
*scene_args)
# The output image is in linear RGB space. Do Gamma correction before saving the image.
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/target.png', gamma=2.2)
target = img.clone()
# Move the polygon to produce initial guess
# normalize points for easier learning rate
points_n = torch.tensor([[140.0 / 256.0, 20.0 / 256.0],
[ 65.0 / 256.0, 228.0 / 256.0],
[215.0 / 256.0, 100.0 / 256.0],
[ 35.0 / 256.0, 90.0 / 256.0],
[160.0 / 256.0, 208.0 / 256.0]], requires_grad=True)
color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True)
polygon.points = points_n * 256
polygon_group.color = color
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
img = render(256, # width
256, # height
2, # num_samples_x
2, # num_samples_y
1, # seed
None, # background_image
*scene_args)
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/init.png', gamma=2.2)
# Optimize for radius & center
optimizer = torch.optim.Adam([points_n, color], lr=1e-2)
# Run 100 Adam iterations.
for t in range(100):
print('iteration:', t)
optimizer.zero_grad()
# Forward pass: render the image.
polygon.points = points_n * 256
polygon_group.color = color
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
img = render(256, # width
256, # height
2, # num_samples_x
2, # num_samples_y
t+1, # seed
None, # background_image
*scene_args)
# Save the intermediate render.
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/iter_{}.png'.format(t), gamma=2.2)
# Compute the loss function. Here it is L2.
loss = (img - target).pow(2).sum()
print('loss:', loss.item())
# Backpropagate the gradients.
loss.backward()
# Print the gradients
print('points_n.grad:', points_n.grad)
print('color.grad:', color.grad)
# Take a gradient descent step.
optimizer.step()
# Print the current params.
print('points:', polygon.points)
print('color:', polygon_group.fill_color)
# Render the final result.
polygon.points = points_n * 256
polygon_group.color = color
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
img = render(256, # width
256, # height
2, # num_samples_x
2, # num_samples_y
102, # seed
None, # background_image
*scene_args)
# Save the images and differences.
pydiffvg.imwrite(img.cpu(), 'results/single_polygon/final.png')
# Convert the intermediate renderings to a video.
from subprocess import call
call(["ffmpeg", "-framerate", "24", "-i",
"results/single_polygon/iter_%d.png", "-vb", "20M",
"results/single_polygon/out.mp4"])