Spaces:
Sleeping
Sleeping
import pydiffvg | |
import torch | |
import skimage | |
import numpy as np | |
# Use GPU if available | |
pydiffvg.set_use_gpu(torch.cuda.is_available()) | |
canvas_width, canvas_height = 256, 256 | |
ellipse = pydiffvg.Ellipse(radius = torch.tensor([60.0, 30.0]), | |
center = torch.tensor([128.0, 128.0])) | |
shapes = [ellipse] | |
ellipse_group = pydiffvg.ShapeGroup(\ | |
shape_ids = torch.tensor([0]), | |
fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0]), | |
shape_to_canvas = torch.eye(3, 3)) | |
shape_groups = [ellipse_group] | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
render = pydiffvg.RenderFunction.apply | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
# The output image is in linear RGB space. Do Gamma correction before saving the image. | |
pydiffvg.imwrite(img.cpu(), 'results/single_ellipse_transform/target.png', gamma=2.2) | |
target = img.clone() | |
# Affine transform the ellipse to produce initial guess | |
color = torch.tensor([0.3, 0.2, 0.8, 1.0], requires_grad=True) | |
affine = torch.zeros(2, 3) | |
affine[0, 0] = 1.3 | |
affine[0, 1] = 0.2 | |
affine[0, 2] = 0.1 | |
affine[1, 0] = 0.2 | |
affine[1, 1] = 0.6 | |
affine[1, 2] = 0.3 | |
affine.requires_grad = True | |
shape_to_canvas = torch.cat((affine, torch.tensor([[0.0, 0.0, 1.0]])), axis=0) | |
ellipse_group.fill_color = color | |
ellipse_group.shape_to_canvas = shape_to_canvas | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
1, # seed | |
None, # background_image | |
*scene_args) | |
pydiffvg.imwrite(img.cpu(), 'results/single_ellipse_transform/init.png', gamma=2.2) | |
# Optimize for radius & center | |
optimizer = torch.optim.Adam([color, affine], lr=1e-2) | |
# Run 150 Adam iterations. | |
for t in range(150): | |
print('iteration:', t) | |
optimizer.zero_grad() | |
# Forward pass: render the image. | |
ellipse_group.fill_color = color | |
ellipse_group.shape_to_canvas = torch.cat((affine, torch.tensor([[0.0, 0.0, 1.0]])), axis=0) | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
t+1, # seed | |
None, # background_image | |
*scene_args) | |
# Save the intermediate render. | |
pydiffvg.imwrite(img.cpu(), 'results/single_ellipse_transform/iter_{}.png'.format(t), gamma=2.2) | |
# Compute the loss function. Here it is L2. | |
loss = (img - target).pow(2).sum() | |
print('loss:', loss.item()) | |
# Backpropagate the gradients. | |
loss.backward() | |
# Print the gradients | |
print('color.grad:', color.grad) | |
print('affine.grad:', affine.grad) | |
# Take a gradient descent step. | |
optimizer.step() | |
# Print the current params. | |
print('color:', ellipse_group.fill_color) | |
print('affine:', affine) | |
# Render the final result. | |
ellipse_group.fill_color = color | |
ellipse_group.shape_to_canvas = torch.cat((affine, torch.tensor([[0.0, 0.0, 1.0]])), axis=0) | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(256, # width | |
256, # height | |
2, # num_samples_x | |
2, # num_samples_y | |
52, # seed | |
None, # background_image | |
*scene_args) | |
# Save the images and differences. | |
pydiffvg.imwrite(img.cpu(), 'results/single_ellipse_transform/final.png') | |
# Convert the intermediate renderings to a video. | |
from subprocess import call | |
call(["ffmpeg", "-framerate", "24", "-i", | |
"results/single_ellipse_transform/iter_%d.png", "-vb", "20M", | |
"results/single_ellipse_transform/out.mp4"]) | |