Spaces:
Sleeping
Sleeping
import pydiffvg_tensorflow as pydiffvg | |
import tensorflow as tf | |
import skimage | |
import numpy as np | |
canvas_width, canvas_height = 256, 256 | |
num_control_points = tf.constant([2, 2, 2]) | |
points = tf.constant([[120.0, 30.0], # base | |
[150.0, 60.0], # control point | |
[ 90.0, 198.0], # control point | |
[ 60.0, 218.0], # base | |
[ 90.0, 180.0], # control point | |
[200.0, 65.0], # control point | |
[210.0, 98.0], # base | |
[220.0, 70.0], # control point | |
[130.0, 55.0]]) # control point | |
path = pydiffvg.Path(num_control_points = num_control_points, | |
points = points, | |
is_closed = True) | |
shapes = [path] | |
path_group = pydiffvg.ShapeGroup( shape_ids = tf.constant([0], dtype=tf.int32), | |
fill_color = tf.constant([0.3, 0.6, 0.3, 1.0])) | |
shape_groups = [path_group] | |
scene_args = pydiffvg.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
render = pydiffvg.render | |
img = render(tf.constant(256), # width | |
tf.constant(256), # height | |
tf.constant(2), # num_samples_x | |
tf.constant(2), # num_samples_y | |
tf.constant(0), # seed | |
*scene_args) | |
# The output image is in linear RGB space. Do Gamma correction before saving the image. | |
pydiffvg.imwrite(img, 'results/single_curve_tf/target.png', gamma=2.2) | |
target = tf.identity(img) | |
# Move the path to produce initial guess | |
# normalize points for easier learning rate | |
points_n = tf.Variable([[100.0/256.0, 40.0/256.0], # base | |
[155.0/256.0, 65.0/256.0], # control point | |
[100.0/256.0, 180.0/256.0], # control point | |
[ 65.0/256.0, 238.0/256.0], # base | |
[100.0/256.0, 200.0/256.0], # control point | |
[170.0/256.0, 55.0/256.0], # control point | |
[220.0/256.0, 100.0/256.0], # base | |
[210.0/256.0, 80.0/256.0], # control point | |
[140.0/256.0, 60.0/256.0]]) # control point | |
color = tf.Variable([0.3, 0.2, 0.5, 1.0]) | |
path.points = points_n * 256 | |
path_group.fill_color = color | |
scene_args = pydiffvg.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(tf.constant(256), # width | |
tf.constant(256), # height | |
tf.constant(2), # num_samples_x | |
tf.constant(2), # num_samples_y | |
tf.constant(1), # seed | |
*scene_args) | |
pydiffvg.imwrite(img, 'results/single_curve_tf/init.png', gamma=2.2) | |
optimizer = tf.compat.v1.train.AdamOptimizer(1e-2) | |
for t in range(100): | |
print('iteration:', t) | |
with tf.GradientTape() as tape: | |
# Forward pass: render the image. | |
path.points = points_n * 256 | |
path_group.fill_color = color | |
# Important to use a different seed every iteration, otherwise the result | |
# would be biased. | |
scene_args = pydiffvg.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(tf.constant(256), # width | |
tf.constant(256), # height | |
tf.constant(2), # num_samples_x | |
tf.constant(2), # num_samples_y | |
tf.constant(t+1), # seed, | |
*scene_args) | |
loss_value = tf.reduce_sum(tf.square(img - target)) | |
print(f"loss_value: {loss_value}") | |
pydiffvg.imwrite(img, 'results/single_curve_tf/iter_{}.png'.format(t)) | |
grads = tape.gradient(loss_value, [points_n, color]) | |
print(grads) | |
optimizer.apply_gradients(zip(grads, [points_n, color])) | |
# Render the final result. | |
path.points = points_n * 256 | |
path_group.fill_color = color | |
scene_args = pydiffvg.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups) | |
img = render(tf.constant(256), # width | |
tf.constant(256), # height | |
tf.constant(2), # num_samples_x | |
tf.constant(2), # num_samples_y | |
tf.constant(101), # seed | |
*scene_args) | |
# Save the images and differences. | |
pydiffvg.imwrite(img, 'results/single_curve_tf/final.png') | |
# Convert the intermediate renderings to a video. | |
from subprocess import call | |
call(["ffmpeg", "-framerate", "24", "-i", | |
"results/single_curve_tf/iter_%d.png", "-vb", "20M", | |
"results/single_curve_tf/out.mp4"]) | |