Spaces:
Sleeping
Sleeping
import pydiffvg | |
import torch | |
import skimage | |
import numpy as np | |
# Use GPU if available | |
pydiffvg.set_use_gpu(torch.cuda.is_available()) | |
canvas_width, canvas_height = 256, 256 | |
num_control_points = torch.tensor([2]) | |
# points = torch.tensor([[120.0, 30.0], # base | |
# [150.0, 60.0], # control point | |
# [ 90.0, 198.0], # control point | |
# [ 60.0, 218.0], # base | |
# [ 90.0, 180.0], # control point | |
# [200.0, 65.0], # control point | |
# [210.0, 98.0], # base | |
# [220.0, 70.0], # control point | |
# [130.0, 55.0]]) # control point | |
points = torch.tensor([[ 20.0, 128.0], # base | |
[ 50.0, 128.0], # control point | |
[170.0, 128.0], # control point | |
[200.0, 128.0]]) # base | |
path = pydiffvg.Path(num_control_points = num_control_points, | |
points = points, | |
is_closed = False, | |
stroke_width = torch.tensor(10.0)) | |
shapes = [path] | |
path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]), | |
fill_color = None, | |
stroke_color = torch.tensor([0.3, 0.6, 0.3, 1.0])) | |
shape_groups = [path_group] | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups, | |
output_type = pydiffvg.OutputType.sdf) | |
render = pydiffvg.RenderFunction.apply | |
img = render(256, # width | |
256, # height | |
1, # num_samples_x | |
1, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
path.points[:, 1] += 1e-3 | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups, | |
output_type = pydiffvg.OutputType.sdf) | |
img2 = render(256, # width | |
256, # height | |
1, # num_samples_x | |
1, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
# diff = img2 - img | |
# diff = diff[:, :, 0] / 1e-3 | |
# import matplotlib.pyplot as plt | |
# plt.imshow(diff) | |
# plt.show() | |
# # The output image is in linear RGB space. Do Gamma correction before saving the image. | |
# pydiffvg.imwrite(img.cpu(), 'results/single_curve_sdf/target.png', gamma=1.0) | |
# target = img.clone() | |
render_grad = pydiffvg.RenderFunction.render_grad | |
img = render_grad(torch.ones(256, 256, 1), # grad_img | |
256, # width | |
256, # height | |
1, # num_samples_x | |
1, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
img = img[:, :, 0] | |
import matplotlib.pyplot as plt | |
plt.imshow(img) | |
plt.show() | |
# # Move the path to produce initial guess | |
# # normalize points for easier learning rate | |
# # points_n = torch.tensor([[100.0/256.0, 40.0/256.0], # base | |
# # [155.0/256.0, 65.0/256.0], # control point | |
# # [100.0/256.0, 180.0/256.0], # control point | |
# # [ 65.0/256.0, 238.0/256.0], # base | |
# # [100.0/256.0, 200.0/256.0], # control point | |
# # [170.0/256.0, 55.0/256.0], # control point | |
# # [220.0/256.0, 100.0/256.0], # base | |
# # [210.0/256.0, 80.0/256.0], # control point | |
# # [140.0/256.0, 60.0/256.0]], # control point | |
# # requires_grad = True) | |
# points_n = torch.tensor([[118.4274/256.0, 32.0159/256.0], | |
# [174.9657/256.0, 28.1877/256.0], | |
# [ 87.6629/256.0, 175.1049/256.0], | |
# [ 57.8093/256.0, 232.8987/256.0], | |
# [ 80.1829/256.0, 165.4280/256.0], | |
# [197.3640/256.0, 83.4058/256.0], | |
# [209.3676/256.0, 97.9176/256.0], | |
# [219.1048/256.0, 72.0000/256.0], | |
# [143.1226/256.0, 57.0636/256.0]], | |
# requires_grad = True) | |
# color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True) | |
# path.points = points_n * 256 | |
# path_group.fill_color = color | |
# scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
# canvas_width, canvas_height, shapes, shape_groups, | |
# output_type = pydiffvg.OutputType.sdf) | |
# img = render(256, # width | |
# 256, # height | |
# 1, # num_samples_x | |
# 1, # num_samples_y | |
# 1, # seed | |
# None, # background_image | |
# *scene_args) | |
# img /= 256.0 | |
# pydiffvg.imwrite(img.cpu(), 'results/single_curve_sdf/init.png', gamma=1.0) | |
# # Optimize | |
# optimizer = torch.optim.Adam([points_n, color], lr=1e-3) | |
# # Run 100 Adam iterations. | |
# for t in range(2): | |
# print('iteration:', t) | |
# optimizer.zero_grad() | |
# # Forward pass: render the image. | |
# path.points = points_n * 256 | |
# path_group.fill_color = color | |
# scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
# canvas_width, canvas_height, shapes, shape_groups, | |
# output_type = pydiffvg.OutputType.sdf) | |
# img = render(256, # width | |
# 256, # height | |
# 1, # num_samples_x | |
# 1, # num_samples_y | |
# t+1, # seed | |
# None, # background_image | |
# *scene_args) | |
# img /= 256.0 | |
# # Save the intermediate render. | |
# pydiffvg.imwrite(img.cpu(), 'results/single_curve_sdf/iter_{}.png'.format(t), gamma=1.0) | |
# # Compute the loss function. Here it is L2. | |
# loss = (img - target).pow(2).sum() | |
# print('loss:', loss.item()) | |
# # Backpropagate the gradients. | |
# loss.backward() | |
# # Print the gradients | |
# print('points_n.grad:', points_n.grad) | |
# print('color.grad:', color.grad) | |
# # Take a gradient descent step. | |
# optimizer.step() | |
# # Print the current params. | |
# print('points:', path.points) | |
# print('color:', path_group.fill_color) | |
# exit() | |
# # Render the final result. | |
# scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
# canvas_width, canvas_height, shapes, shape_groups, | |
# output_type = pydiffvg.OutputType.sdf) | |
# img = render(256, # width | |
# 256, # height | |
# 1, # num_samples_x | |
# 1, # num_samples_y | |
# 102, # seed | |
# None, # background_image | |
# *scene_args) | |
# img /= 256.0 | |
# # Save the images and differences. | |
# pydiffvg.imwrite(img.cpu(), 'results/single_curve_sdf/final.png', gamma=1.0) | |
# # Convert the intermediate renderings to a video. | |
# from subprocess import call | |
# call(["ffmpeg", "-framerate", "24", "-i", | |
# "results/single_curve_sdf/iter_%d.png", "-vb", "20M", | |
# "results/single_curve_sdf/out.mp4"]) | |