Spaces:
Sleeping
Sleeping
import pydiffvg | |
import torch | |
import torchvision | |
from PIL import Image | |
import numpy as np | |
# Use GPU if available | |
pydiffvg.set_use_gpu(torch.cuda.is_available()) | |
def inv_exp(a,x,xpow=1): | |
return pow(a,pow(1.-x,xpow)) | |
import math | |
import numbers | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
import visdom | |
class GaussianSmoothing(nn.Module): | |
""" | |
Apply gaussian smoothing on a | |
1d, 2d or 3d tensor. Filtering is performed seperately for each channel | |
in the input using a depthwise convolution. | |
Arguments: | |
channels (int, sequence): Number of channels of the input tensors. Output will | |
have this number of channels as well. | |
kernel_size (int, sequence): Size of the gaussian kernel. | |
sigma (float, sequence): Standard deviation of the gaussian kernel. | |
dim (int, optional): The number of dimensions of the data. | |
Default value is 2 (spatial). | |
""" | |
def __init__(self, channels, kernel_size, sigma, dim=2): | |
super(GaussianSmoothing, self).__init__() | |
if isinstance(kernel_size, numbers.Number): | |
kernel_size = [kernel_size] * dim | |
if isinstance(sigma, numbers.Number): | |
sigma = [sigma] * dim | |
# The gaussian kernel is the product of the | |
# gaussian function of each dimension. | |
kernel = 1 | |
meshgrids = torch.meshgrid( | |
[ | |
torch.arange(size, dtype=torch.float32) | |
for size in kernel_size | |
] | |
) | |
for size, std, mgrid in zip(kernel_size, sigma, meshgrids): | |
mean = (size - 1) / 2 | |
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \ | |
torch.exp(-((mgrid - mean) / std) ** 2 / 2) | |
# Make sure sum of values in gaussian kernel equals 1. | |
kernel = kernel / torch.sum(kernel) | |
# Reshape to depthwise convolutional weight | |
kernel = kernel.view(1, 1, *kernel.size()) | |
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) | |
self.register_buffer('weight', kernel) | |
self.groups = channels | |
if dim == 1: | |
self.conv = F.conv1d | |
elif dim == 2: | |
self.conv = F.conv2d | |
elif dim == 3: | |
self.conv = F.conv3d | |
else: | |
raise RuntimeError( | |
'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim) | |
) | |
def forward(self, input): | |
""" | |
Apply gaussian filter to input. | |
Arguments: | |
input (torch.Tensor): Input to apply gaussian filter on. | |
Returns: | |
filtered (torch.Tensor): Filtered output. | |
""" | |
return self.conv(input, weight=self.weight, groups=self.groups) | |
vis=visdom.Visdom(port=8080) | |
smoothing = GaussianSmoothing(4, 5, 1) | |
settings=pydiffvg.SvgOptimizationSettings() | |
settings.global_override(["optimize_color"],False) | |
settings.global_override(["optimize_alpha"],False) | |
settings.global_override(["gradients","optimize_color"],False) | |
settings.global_override(["gradients","optimize_alpha"],False) | |
settings.global_override(["gradients","optimize_stops"],False) | |
settings.global_override(["gradients","optimize_location"],False) | |
settings.global_override(["optimizer"],"Adam") | |
settings.global_override(["paths","optimize_points"],False) | |
settings.global_override(["transforms","transform_lr"],1e-2) | |
settings.undefault("linearGradient3152") | |
settings.retrieve("linearGradient3152")[0]["transforms"]["optimize_transforms"]=False | |
#optim=pydiffvg.OptimizableSvg("note_small.svg",settings,verbose=True) | |
optim=pydiffvg.OptimizableSvg("heart_green.svg",settings,verbose=True) | |
#img=torchvision.transforms.ToTensor()(Image.open("note_transformed.png")).permute(1,2,0) | |
img=torchvision.transforms.ToTensor()(Image.open("heart_green_90.png")).permute(1,2,0) | |
name="heart_green_90" | |
pydiffvg.imwrite(img.cpu(), 'results/simple_transform_svg/target.png') | |
target = img.clone().detach().requires_grad_(False) | |
img=optim.render() | |
pydiffvg.imwrite(img.cpu(), 'results/simple_transform_svg/init.png') | |
def smooth(input, kernel): | |
input=torch.nn.functional.pad(input.permute(2,0,1).unsqueeze(0), (2, 2, 2, 2), mode='reflect') | |
output=kernel(input) | |
return output | |
def printimg(optim): | |
img=optim.render() | |
comp = img.clone().detach() | |
bg = torch.tensor([[[1., 1., 1.]]]) | |
comprgb = comp[:, :, 0:3] | |
compalpha = comp[:, :, 3].unsqueeze(2) | |
comp = comprgb * compalpha \ | |
+ bg * (1 - compalpha) | |
return comp | |
def comp_loss_and_grad(img, tgt, it, sz): | |
dif=img-tgt | |
loss=dif.pow(2).mean() | |
dif=dif.detach() | |
cdif=dif.clone().abs() | |
cdif[:,:,3]=1. | |
resdif=torch.nn.functional.interpolate(cdif.permute(2,0,1).unsqueeze(0),sz,mode='bilinear').squeeze().permute(1,2,0).abs() | |
pydiffvg.imwrite(resdif[:,:,0:4], 'results/simple_transform_svg/dif_{:04}.png'.format(it)) | |
dif=dif.numpy() | |
padded=np.pad(dif,[(1,1),(1,1),(0,0)],mode='edge') | |
#print(padded[:-2,:,:].shape) | |
grad_x=(padded[:-2,:,:]-padded[2:,:,:])[:,1:-1,:] | |
grad_y=(padded[:,:-2,:]-padded[:,2:,:])[1:-1,:,:] | |
resshape=dif.shape | |
resshape=(resshape[0],resshape[1],2) | |
res=np.zeros(resshape) | |
for x in range(resshape[0]): | |
for y in range(resshape[1]): | |
A=np.concatenate((grad_x[x,y,:][:,np.newaxis],grad_y[x,y,:][:,np.newaxis]),axis=1) | |
b=-dif[x,y,:] | |
v=np.linalg.lstsq(np.dot(A.T,A),np.dot(A.T,b)) | |
res[x,y,:]=v[0] | |
return loss, res | |
import colorsys | |
def print_gradimg(gradimg,it,shape=None): | |
out=torch.zeros((gradimg.shape[0],gradimg.shape[1],3),requires_grad=False,dtype=torch.float32) | |
for x in range(gradimg.shape[0]): | |
for y in range(gradimg.shape[1]): | |
h=math.atan2(gradimg[x,y,1],gradimg[x,y,0]) | |
s=math.tanh(np.linalg.norm(gradimg[x,y,:])) | |
v=1. | |
vec=(gradimg[x,y,:].clip(min=-1,max=1)/2)+.5 | |
#out[x,y,:]=torch.tensor(colorsys.hsv_to_rgb(h,s,v),dtype=torch.float32) | |
out[x,y,:]=torch.tensor([vec[0],vec[1],0]) | |
if shape is not None: | |
out=torch.nn.functional.interpolate(out.permute(2,0,1).unsqueeze(0),shape,mode='bilinear').squeeze().permute(1,2,0) | |
pydiffvg.imwrite(out.cpu(), 'results/simple_transform_svg/grad_{:04}.png'.format(it)) | |
# Run 150 Adam iterations. | |
for t in range(1000): | |
print('iteration:', t) | |
optim.zero_grad() | |
with open('results/simple_transform_svg/viter_{:04}.svg'.format(t),"w") as f: | |
f.write(optim.write_xml()) | |
scale=inv_exp(1/16,math.pow(t/1000,1),0.5) | |
#print(scale) | |
#img = optim.render(seed=t+1,scale=scale) | |
img = optim.render(seed=t + 1, scale=None) | |
vis.line(torch.tensor([img.shape[0]]), X=torch.tensor([t]), win=name + " size", update="append", | |
opts={"title": name + " size"}) | |
#print(img.shape) | |
#img = optim.render(seed=t + 1) | |
ptgt=target.permute(2,0,1).unsqueeze(0) | |
sz=img.shape[0:2] | |
restgt=torch.nn.functional.interpolate(ptgt,size=sz,mode='bilinear').squeeze().permute(1,2,0) | |
# Compute the loss function. Here it is L2. | |
#loss = (smooth(img,smoothing) - smooth(restgt,smoothing)).pow(2).mean() | |
#loss = (img - restgt).pow(2).mean() | |
#loss=(img-target).pow(2).mean() | |
loss,gradimg=comp_loss_and_grad(img, restgt,t,target.shape[0:2]) | |
print_gradimg(gradimg,t,target.shape[0:2]) | |
print('loss:', loss.item()) | |
vis.line(loss.unsqueeze(0), X=torch.tensor([t]), win=name+" loss", update="append", | |
opts={"title": name + " loss"}) | |
# Backpropagate the gradients. | |
loss.backward() | |
# Take a gradient descent step. | |
optim.step() | |
# Save the intermediate render. | |
comp=printimg(optim) | |
pydiffvg.imwrite(comp.cpu(), 'results/simple_transform_svg/iter_{:04}.png'.format(t)) | |
# Render the final result. | |
img = optim.render() | |
# Save the images and differences. | |
pydiffvg.imwrite(img.cpu(), 'results/simple_transform_svg/final.png') | |
with open('results/simple_transform_svg/final.svg', "w") as f: | |
f.write(optim.write_xml()) | |
# Convert the intermediate renderings to a video. | |
from subprocess import call | |
call(["ffmpeg", "-framerate", "24", "-i", | |
"results/simple_transform_svg/iter_%04d.png", "-vb", "20M", | |
"results/simple_transform_svg/out.mp4"]) | |
call(["ffmpeg", "-framerate", "24", "-i", | |
"results/simple_transform_svg/grad_%04d.png", "-vb", "20M", | |
"results/simple_transform_svg/out_grad.mp4"]) | |