Spaces:
Sleeping
Sleeping
# python finite_difference_comp.py imgs/tiger.svg | |
# python finite_difference_comp.py --use_prefiltering True imgs/tiger.svg | |
# python finite_difference_comp.py imgs/boston.svg | |
# python finite_difference_comp.py --use_prefiltering True imgs/boston.svg | |
# python finite_difference_comp.py imgs/contour.svg | |
# python finite_difference_comp.py --use_prefiltering True imgs/contour.svg | |
# python finite_difference_comp.py --size_scale 0.5 --clamping_factor 0.05 imgs/hawaii.svg | |
# python finite_difference_comp.py --size_scale 0.5 --clamping_factor 0.05 --use_prefiltering True imgs/hawaii.svg | |
# python finite_difference_comp.py imgs/mcseem2.svg | |
# python finite_difference_comp.py --use_prefiltering True imgs/mcseem2.svg | |
# python finite_difference_comp.py imgs/reschart.svg | |
# python finite_difference_comp.py --use_prefiltering True imgs/reschart.svg | |
import pydiffvg | |
import diffvg | |
from matplotlib import cm | |
import matplotlib.pyplot as plt | |
import argparse | |
import torch | |
pydiffvg.set_print_timing(True) | |
#pydiffvg.set_use_gpu(False) | |
def normalize(x, min_, max_): | |
range = max(abs(min_), abs(max_)) | |
return (x + range) / (2 * range) | |
def main(args): | |
canvas_width, canvas_height, shapes, shape_groups = \ | |
pydiffvg.svg_to_scene(args.svg_file) | |
w = int(canvas_width * args.size_scale) | |
h = int(canvas_height * args.size_scale) | |
print(w, h) | |
curve_counts = 0 | |
for s in shapes: | |
if isinstance(s, pydiffvg.Circle): | |
curve_counts += 1 | |
elif isinstance(s, pydiffvg.Ellipse): | |
curve_counts += 1 | |
elif isinstance(s, pydiffvg.Path): | |
curve_counts += len(s.num_control_points) | |
elif isinstance(s, pydiffvg.Polygon): | |
curve_counts += len(s.points) - 1 | |
if s.is_closed: | |
curve_counts += 1 | |
elif isinstance(s, pydiffvg.Rect): | |
curve_counts += 1 | |
print('curve_counts:', curve_counts) | |
pfilter = pydiffvg.PixelFilter(type = diffvg.FilterType.box, | |
radius = torch.tensor(0.5)) | |
use_prefiltering = args.use_prefiltering | |
print('use_prefiltering:', use_prefiltering) | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups, | |
filter = pfilter, | |
use_prefiltering = use_prefiltering) | |
num_samples_x = args.num_spp | |
num_samples_y = args.num_spp | |
if (use_prefiltering): | |
num_samples_x = 1 | |
num_samples_y = 1 | |
render = pydiffvg.RenderFunction.apply | |
img = render(w, # width | |
h, # height | |
num_samples_x, # num_samples_x | |
num_samples_y, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
pydiffvg.imwrite(img.cpu(), 'results/finite_difference_comp/img.png', gamma=1.0) | |
epsilon = 0.1 | |
def perturb_scene(axis, epsilon): | |
for s in shapes: | |
if isinstance(s, pydiffvg.Circle): | |
s.center[axis] += epsilon | |
elif isinstance(s, pydiffvg.Ellipse): | |
s.center[axis] += epsilon | |
elif isinstance(s, pydiffvg.Path): | |
s.points[:, axis] += epsilon | |
elif isinstance(s, pydiffvg.Polygon): | |
s.points[:, axis] += epsilon | |
elif isinstance(s, pydiffvg.Rect): | |
s.p_min[axis] += epsilon | |
s.p_max[axis] += epsilon | |
for s in shape_groups: | |
if isinstance(s.fill_color, pydiffvg.LinearGradient): | |
s.fill_color.begin[axis] += epsilon | |
s.fill_color.end[axis] += epsilon | |
perturb_scene(0, epsilon) | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups, | |
filter = pfilter, | |
use_prefiltering = use_prefiltering) | |
render = pydiffvg.RenderFunction.apply | |
img0 = render(w, # width | |
h, # height | |
num_samples_x, # num_samples_x | |
num_samples_y, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
perturb_scene(0, -2 * epsilon) | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups, | |
filter = pfilter, | |
use_prefiltering = use_prefiltering) | |
img1 = render(w, # width | |
h, # height | |
num_samples_x, # num_samples_x | |
num_samples_y, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
x_diff = (img0 - img1) / (2 * epsilon) | |
x_diff = x_diff.sum(axis = 2) | |
x_diff_max = x_diff.max() * args.clamping_factor | |
x_diff_min = x_diff.min() * args.clamping_factor | |
print(x_diff.max()) | |
print(x_diff.min()) | |
x_diff = cm.viridis(normalize(x_diff, x_diff_min, x_diff_max).cpu().numpy()) | |
pydiffvg.imwrite(x_diff, 'results/finite_difference_comp/finite_x_diff.png', gamma=1.0) | |
perturb_scene(0, epsilon) | |
perturb_scene(1, epsilon) | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups, | |
filter = pfilter, | |
use_prefiltering = use_prefiltering) | |
render = pydiffvg.RenderFunction.apply | |
img0 = render(w, # width | |
h, # height | |
num_samples_x, # num_samples_x | |
num_samples_y, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
perturb_scene(1, -2 * epsilon) | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups, | |
filter = pfilter, | |
use_prefiltering = use_prefiltering) | |
img1 = render(w, # width | |
h, # height | |
num_samples_x, # num_samples_x | |
num_samples_y, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
y_diff = (img0 - img1) / (2 * epsilon) | |
y_diff = y_diff.sum(axis = 2) | |
y_diff_max = y_diff.max() * args.clamping_factor | |
y_diff_min = y_diff.min() * args.clamping_factor | |
y_diff = cm.viridis(normalize(y_diff, y_diff_min, y_diff_max).cpu().numpy()) | |
pydiffvg.imwrite(y_diff, 'results/finite_difference_comp/finite_y_diff.png', gamma=1.0) | |
perturb_scene(1, epsilon) | |
scene_args = pydiffvg.RenderFunction.serialize_scene(\ | |
canvas_width, canvas_height, shapes, shape_groups, | |
filter = pfilter, | |
use_prefiltering = use_prefiltering) | |
render_grad = pydiffvg.RenderFunction.render_grad | |
img_grad = render_grad(torch.ones(h, w, 4, device = pydiffvg.get_device()), | |
w, # width | |
h, # height | |
num_samples_x, # num_samples_x | |
num_samples_y, # num_samples_y | |
0, # seed | |
None, # background_image | |
*scene_args) | |
print(img_grad[:, :, 0].max()) | |
print(img_grad[:, :, 0].min()) | |
x_diff = cm.viridis(normalize(img_grad[:, :, 0], x_diff_min, x_diff_max).cpu().numpy()) | |
y_diff = cm.viridis(normalize(img_grad[:, :, 1], y_diff_min, y_diff_max).cpu().numpy()) | |
pydiffvg.imwrite(x_diff, 'results/finite_difference_comp/ours_x_diff.png', gamma=1.0) | |
pydiffvg.imwrite(y_diff, 'results/finite_difference_comp/ours_y_diff.png', gamma=1.0) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("svg_file", help="source SVG path") | |
parser.add_argument("--size_scale", type=float, default=1.0) | |
parser.add_argument("--clamping_factor", type=float, default=0.1) | |
parser.add_argument("--num_spp", type=int, default=4) | |
parser.add_argument("--use_prefiltering", type=bool, default=False) | |
args = parser.parse_args() | |
main(args) | |