Spaces:
Sleeping
Sleeping
File size: 18,328 Bytes
31726e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
#imports
import numpy as np
import matplotlib.pyplot as plt
import os
from math import floor, ceil
from random import randint
from sklearn.neighbors import KDTree
from skimage.util.shape import view_as_windows
from skimage import io
from PIL import Image, ImageDraw
from IPython.display import clear_output
class patchBasedTextureSynthesis:
def __init__(self, exampleMapPath, in_outputPath, in_outputSize, in_patchSize, in_overlapSize, in_windowStep = 5, in_mirror_hor = True, in_mirror_vert = True, in_shapshots = True):
self.exampleMap = self.loadExampleMap(exampleMapPath)
self.snapshots = in_shapshots
self.outputPath = in_outputPath
self.outputSize = in_outputSize
self.patchSize = in_patchSize
self.overlapSize = in_overlapSize
self.mirror_hor = in_mirror_hor
self.mirror_vert = in_mirror_vert
self.total_patches_count = 0 #excluding mirrored versions
self.windowStep = 5
self.iter = 0
self.checkIfDirectoryExists() #check if output directory exists
self.examplePatches = self.prepareExamplePatches()
self.canvas, self.filledMap, self.idMap = self.initCanvas()
self.initFirstPatch() #place random block to start with
self.kdtree_topOverlap, self.kdtree_leftOverlap, self.kdtree_combined = self.initKDtrees()
self.PARM_truncation = 0.8
self.PARM_attenuation = 2
def checkIfDirectoryExists(self):
if not os.path.exists(self.outputPath):
os.makedirs(self.outputPath)
def resolveAll(self):
self.saveParams()
#resolve all unresolved patches
for i in range(np.sum(1-self.filledMap).astype(int)):
self.resolveNext()
if not self.snapshots:
img = Image.fromarray(np.uint8(self.canvas*255))
img = img.resize((self.outputSize[0], self.outputSize[1]), resample=0, box=None)
img.save(self.outputPath + 'out.jpg')
# else:
# self.visualize([0,0], [], [], showCandidates=False)
return img
def saveParams(self):
#write
text_file = open(self.outputPath + 'params.txt', "w")
text_file.write("PatchSize: %d \nOverlapSize: %d \nMirror Vert: %d \nMirror Hor: %d" % (self.patchSize, self.overlapSize, self.mirror_vert, self.mirror_hor))
text_file.close()
def resolveNext(self):
#coordinate of the next one to resolve
coord = self.idCoordTo2DCoord(np.sum(self.filledMap), np.shape(self.filledMap)) #get 2D coordinate of next to resolve patch
#get overlap areas of the patch we want to resolve
overlapArea_Top = self.getOverlapAreaTop(coord)
overlapArea_Left = self.getOverlapAreaLeft(coord)
#find most similar patch from the examples
dist, ind = self.findMostSimilarPatches(overlapArea_Top, overlapArea_Left, coord)
if self.mirror_hor or self.mirror_vert:
#check that top and left neighbours are not mirrors
dist, ind = self.checkForMirrors(dist, ind, coord)
#choose random valid patch
probabilities = self.distances2probability(dist, self.PARM_truncation, self.PARM_attenuation)
chosenPatchId = np.random.choice(ind, 1, p=probabilities)
#update canvas
blend_top = (overlapArea_Top is not None)
blend_left = (overlapArea_Left is not None)
self.updateCanvas(chosenPatchId, coord[0], coord[1], blend_top, blend_left)
#update filledMap and id map ;)
self.filledMap[coord[0], coord[1]] = 1
self.idMap[coord[0], coord[1]] = chosenPatchId
#visualize
# self.visualize(coord, chosenPatchId, ind)
self.iter += 1
def visualize(self, coord, chosenPatchId, nonchosenPatchId, showCandidates = True):
#full visualization includes both example and generated img
canvasSize = np.shape(self.canvas)
#insert generated image
vis = np.zeros((canvasSize[0], canvasSize[1] * 2, 3)) + 0.2
vis[:, 0:canvasSize[1]] = self.canvas
#insert example
exampleHighlited = np.copy(self.exampleMap)
if showCandidates:
exampleHighlited = self.hightlightPatchCandidates(chosenPatchId, nonchosenPatchId)
h = floor(canvasSize[0] / 2)
w = floor(canvasSize[1] / 2)
exampleResized = self.resize(exampleHighlited, [h, w])
offset_h = floor((canvasSize[0] - h) / 2)
offset_w = floor((canvasSize[1] - w) / 2)
vis[offset_h:offset_h+h, canvasSize[1]+offset_w:canvasSize[1]+offset_w+w] = exampleResized
#show live update
plt.imshow(vis)
clear_output(wait=True)
display(plt.show())
if self.snapshots:
img = Image.fromarray(np.uint8(vis*255))
img = img.resize((self.outputSize[0]*2, self.outputSize[1]), resample=0, box=None)
img.save(self.outputPath + 'out' + str(self.iter) + '.jpg')
def hightlightPatchCandidates(self, chosenPatchId, nonchosenPatchId):
result = np.copy(self.exampleMap)
#mod patch ID
chosenPatchId = chosenPatchId[0] % self.total_patches_count
if len(nonchosenPatchId)>0:
nonchosenPatchId = nonchosenPatchId % self.total_patches_count
#exlcude chosen from nonchosen
nonchosenPatchId = np.delete(nonchosenPatchId, np.where(nonchosenPatchId == chosenPatchId))
#highlight non chosen candidates
c = [0.25, 0.9 ,0.45]
self.highlightPatches(result, nonchosenPatchId, color=c, highlight_width = 4, alpha = 0.5)
#hightlight chosen
c = [1.0, 0.25, 0.15]
self.highlightPatches(result, [chosenPatchId], color=c, highlight_width = 4, alpha = 1)
return result
def highlightPatches(self, writeResult, patchesIDs, color, highlight_width = 2, solid = False, alpha = 0.1):
searchWindow = self.patchSize + 2*self.overlapSize
#number of possible steps
row_steps = floor((np.shape(writeResult)[0] - searchWindow) / self.windowStep) + 1
col_steps = floor((np.shape(writeResult)[1] - searchWindow) / self.windowStep) + 1
for i in range(len(patchesIDs)):
chosenPatchId = patchesIDs[i]
#patch Id to step
patch_row = floor(chosenPatchId / col_steps)
patch_col = chosenPatchId - patch_row * col_steps
#highlight chosen patch (below are boundaries of the example patch)
row_start = self.windowStep* patch_row
row_end = self.windowStep * patch_row + searchWindow
col_start = self.windowStep * patch_col
col_end = self.windowStep * patch_col + searchWindow
if not solid:
w = highlight_width
overlap = np.copy(writeResult[row_start:row_start+w, col_start:col_end])
writeResult[row_start:row_start+w, col_start:col_end] = overlap * (1-alpha) + (np.zeros(np.shape(overlap))+color) * alpha #top
overlap = np.copy(writeResult[row_end-w:row_end, col_start:col_end])
writeResult[row_end-w:row_end, col_start:col_end] = overlap * (1-alpha) + (np.zeros(np.shape(overlap))+color) * alpha #bot
overlap = np.copy( writeResult[row_start:row_end, col_start:col_start+w])
writeResult[row_start:row_end, col_start:col_start+w] = overlap * (1-alpha) + (np.zeros(np.shape(overlap))+color) * alpha #left
overlap = np.copy(writeResult[row_start:row_end, col_end-w:col_end])
writeResult[row_start:row_end, col_end-w:col_end] = overlap * (1-alpha) + (np.zeros(np.shape(overlap))+color) * alpha #end
else:
a = alpha
writeResult[row_start:row_end, col_start:col_end] = writeResult[row_start:row_end, col_start:col_end] * (1-a) + (np.zeros(np.shape(writeResult[row_start:row_end, col_start:col_end]))+color) * a
def resize(self, imgArray, targetSize):
img = Image.fromarray(np.uint8(imgArray*255))
img = img.resize((targetSize[0], targetSize[1]), resample=0, box=None)
return np.array(img)/255
def findMostSimilarPatches(self, overlapArea_Top, overlapArea_Left, coord, in_k=5):
#check which KD tree we need to use
if (overlapArea_Top is not None) and (overlapArea_Left is not None):
combined = self.getCombinedOverlap(overlapArea_Top.reshape(-1), overlapArea_Left.reshape(-1))
dist, ind = self.kdtree_combined.query([combined], k=in_k)
elif overlapArea_Top is not None:
dist, ind = self.kdtree_topOverlap.query([overlapArea_Top.reshape(-1)], k=in_k)
elif overlapArea_Left is not None:
dist, ind = self.kdtree_leftOverlap.query([overlapArea_Left.reshape(-1)], k=in_k)
else:
raise Exception("ERROR: no valid overlap area is passed to -findMostSimilarPatch-")
dist = dist[0]
ind = ind[0]
return dist, ind
#disallow visually similar blocks to be placed next to each other
def checkForMirrors(self, dist, ind, coord, thres = 3):
remove_i = []
#do I have a top or left neighbour
if coord[0]-1>-1:
top_neigh = int(self.idMap[coord[0]-1, coord[1]])
for i in range(len(ind)):
if (abs(ind[i]%self.total_patches_count - top_neigh%self.total_patches_count) < thres):
remove_i.append(i)
if coord[1]-1>-1:
left_neigh = int(self.idMap[coord[0], coord[1]-1])
for i in range(len(ind)):
if (abs(ind[i]%self.total_patches_count - left_neigh%self.total_patches_count) < thres):
remove_i.append(i)
dist = np.delete(dist, remove_i)
ind = np.delete(ind, remove_i)
return dist, ind
def distances2probability(self, distances, PARM_truncation, PARM_attenuation):
probabilities = 1 - distances / np.max(distances)
probabilities *= (probabilities > PARM_truncation)
probabilities = pow(probabilities, PARM_attenuation) #attenuate the values
#check if we didn't truncate everything!
if np.sum(probabilities) == 0:
#then just revert it
probabilities = 1 - distances / np.max(distances)
probabilities *= (probabilities > PARM_truncation*np.max(probabilities)) # truncate the values (we want top truncate%)
probabilities = pow(probabilities, PARM_attenuation)
probabilities /= np.sum(probabilities) #normalize so they add up to one
return probabilities
def getOverlapAreaTop(self, coord):
#do I have a top neighbour
if coord[0]-1>-1:
canvasPatch = self.patchCoord2canvasPatch(coord)
return canvasPatch[0:self.overlapSize, :, :]
else:
return None
def getOverlapAreaLeft(self, coord):
#do I have a left neighbour
if coord[1]-1>-1:
canvasPatch = self.patchCoord2canvasPatch(coord)
return canvasPatch[:, 0:self.overlapSize, :]
else:
return None
def initKDtrees(self):
#prepate overlap patches
topOverlap = self.examplePatches[:, 0:self.overlapSize, :, :]
leftOverlap = self.examplePatches[:, :, 0:self.overlapSize, :]
shape_top = np.shape(topOverlap)
shape_left = np.shape(leftOverlap)
flatten_top = topOverlap.reshape(shape_top[0], -1)
flatten_left = leftOverlap.reshape(shape_left[0], -1)
flatten_combined = self.getCombinedOverlap(flatten_top, flatten_left)
tree_top = KDTree(flatten_top)
tree_left = KDTree(flatten_left)
tree_combined = KDTree(flatten_combined)
return tree_top, tree_left, tree_combined
#the corner of 2 overlaps is counted double
def getCombinedOverlap(self, top, left):
shape = np.shape(top)
if len(shape) > 1:
combined = np.zeros((shape[0], shape[1]*2))
combined[0:shape[0], 0:shape[1]] = top
combined[0:shape[0], shape[1]:shape[1]*2] = left
else:
combined = np.zeros((shape[0]*2))
combined[0:shape[0]] = top
combined[shape[0]:shape[0]*2] = left
return combined
def initFirstPatch(self):
#grab a random block
patchId = randint(0, np.shape(self.examplePatches)[0])
#mark out fill map
self.filledMap[0, 0] = 1
self.idMap[0, 0] = patchId % self.total_patches_count
#update canvas
self.updateCanvas(patchId, 0, 0, False, False)
#visualize
# self.visualize([0,0], [patchId], [])
def prepareExamplePatches(self):
searchKernelSize = self.patchSize + 2 * self.overlapSize
result = view_as_windows(self.exampleMap, [searchKernelSize, searchKernelSize, 3] , self.windowStep)
shape = np.shape(result)
result = result.reshape(shape[0]*shape[1], searchKernelSize, searchKernelSize, 3)
self.total_patches_count = shape[0]*shape[1]
if self.mirror_hor:
#flip along horizonal axis
hor_result = np.zeros(np.shape(result))
for i in range(self.total_patches_count):
hor_result[i] = result[i][::-1, :, :]
result = np.concatenate((result, hor_result))
if self.mirror_vert:
vert_result = np.zeros((shape[0]*shape[1], searchKernelSize, searchKernelSize, 3))
for i in range(self.total_patches_count):
vert_result[i] = result[i][:, ::-1, :]
result = np.concatenate((result, vert_result))
return result
def initCanvas(self):
#check whether the outputSize adheres to patch+overlap size
num_patches_X = ceil((self.outputSize[0]-self.overlapSize)/(self.patchSize+self.overlapSize))
num_patches_Y = ceil((self.outputSize[1]-self.overlapSize)/(self.patchSize+self.overlapSize))
#calc needed output image size
required_size_X = num_patches_X*self.patchSize + (num_patches_X+1)*self.overlapSize
required_size_Y = num_patches_Y*self.patchSize + (num_patches_X+1)*self.overlapSize
#create empty canvas
canvas = np.zeros((required_size_X, required_size_Y, 3))
filledMap = np.zeros((num_patches_X, num_patches_Y)) #map showing which patches have been resolved
idMap = np.zeros((num_patches_X, num_patches_Y)) - 1 #stores patches id
print("modified output size: ", np.shape(canvas))
print("number of patches: ", np.shape(filledMap)[0])
return canvas, filledMap, idMap
def idCoordTo2DCoord(self, idCoord, imgSize):
row = int(floor(idCoord / imgSize[0]))
col = int(idCoord - row * imgSize[1])
return [row, col]
def updateCanvas(self, inputPatchId, coord_X, coord_Y, blendTop = False, blendLeft = False):
#translate Patch coordinate into Canvas coordinate
x_range = self.patchCoord2canvasCoord(coord_X)
y_range = self.patchCoord2canvasCoord(coord_Y)
examplePatch = self.examplePatches[inputPatchId]
if blendLeft:
canvasOverlap = self.canvas[x_range[0]:x_range[1], y_range[0]:y_range[0]+self.overlapSize]
examplePatchOverlap = np.copy(examplePatch[0][:, 0:self.overlapSize])
examplePatch[0][:, 0:self.overlapSize] = self.linearBlendOverlaps(canvasOverlap, examplePatchOverlap, 'left')
if blendTop:
canvasOverlap = self.canvas[x_range[0]:x_range[0]+self.overlapSize, y_range[0]:y_range[1]]
examplePatchOverlap = np.copy(examplePatch[0][0:self.overlapSize, :])
examplePatch[0][0:self.overlapSize, :] = self.linearBlendOverlaps(canvasOverlap, examplePatchOverlap, 'top')
self.canvas[x_range[0]:x_range[1], y_range[0]:y_range[1]] = examplePatch
def linearBlendOverlaps(self, canvasOverlap, examplePatchOverlap, mode):
if mode == 'left':
mask = np.repeat(np.arange(self.overlapSize)[np.newaxis, :], np.shape(canvasOverlap)[0], axis=0) / self.overlapSize
elif mode == 'top':
mask = np.repeat(np.arange(self.overlapSize)[:, np.newaxis], np.shape(canvasOverlap)[1], axis=1) / self.overlapSize
mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2) #cast to 3d array
return canvasOverlap * (1 - mask) + examplePatchOverlap * mask
#def minimumBoundaryError(self, canvasOverlap, examplePatchOverlap, mode)
def patchCoord2canvasCoord(self, coord):
return [(self.patchSize+self.overlapSize)*coord, (self.patchSize+self.overlapSize)*(coord+1) + self.overlapSize]
def patchCoord2canvasPatch(self, coord):
x_range = self.patchCoord2canvasCoord(coord[0])
y_range = self.patchCoord2canvasCoord(coord[1])
return np.copy(self.canvas[x_range[0]:x_range[1], y_range[0]:y_range[1]])
def loadExampleMap(self, exampleMapPath):
exampleMap = io.imread(exampleMapPath) #returns an MxNx3 array
exampleMap = exampleMap / 255.0 #normalize
#make sure it is 3channel RGB
if (np.shape(exampleMap)[-1] > 3):
exampleMap = exampleMap[:,:,:3] #remove Alpha Channel
elif (len(np.shape(exampleMap)) == 2):
exampleMap = np.repeat(exampleMap[np.newaxis, :, :], 3, axis=0) #convert from Grayscale to RGB
return exampleMap
|