File size: 18,328 Bytes
31726e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#imports
import numpy as np
import matplotlib.pyplot as plt
import os

from math import floor, ceil
from random import randint

from sklearn.neighbors import KDTree
from skimage.util.shape import view_as_windows
from skimage import io

from PIL import Image, ImageDraw
from IPython.display import clear_output

class patchBasedTextureSynthesis:
    
    def __init__(self, exampleMapPath, in_outputPath, in_outputSize, in_patchSize, in_overlapSize, in_windowStep = 5, in_mirror_hor = True, in_mirror_vert = True, in_shapshots = True):
        self.exampleMap = self.loadExampleMap(exampleMapPath)
        self.snapshots = in_shapshots
        self.outputPath = in_outputPath
        self.outputSize = in_outputSize
        self.patchSize = in_patchSize
        self.overlapSize = in_overlapSize
        self.mirror_hor = in_mirror_hor
        self.mirror_vert = in_mirror_vert
        self.total_patches_count = 0 #excluding mirrored versions
        self.windowStep = 5
        self.iter = 0
        
        self.checkIfDirectoryExists() #check if output directory exists
        self.examplePatches = self.prepareExamplePatches()
        self.canvas, self.filledMap, self.idMap = self.initCanvas()
        self.initFirstPatch() #place random block to start with
        self.kdtree_topOverlap, self.kdtree_leftOverlap, self.kdtree_combined = self.initKDtrees()

        self.PARM_truncation = 0.8
        self.PARM_attenuation = 2

    def checkIfDirectoryExists(self):
        if not os.path.exists(self.outputPath):
            os.makedirs(self.outputPath)
        
    def resolveAll(self):
        self.saveParams()
        #resolve all unresolved patches
        for i in range(np.sum(1-self.filledMap).astype(int)):
            self.resolveNext()
            
        if not self.snapshots:
            img = Image.fromarray(np.uint8(self.canvas*255))
            img = img.resize((self.outputSize[0], self.outputSize[1]), resample=0, box=None)
            img.save(self.outputPath + 'out.jpg')
        # else:
        #     self.visualize([0,0], [], [], showCandidates=False)
        return img
    def saveParams(self):
        #write
        text_file = open(self.outputPath + 'params.txt', "w")
        text_file.write("PatchSize: %d \nOverlapSize: %d \nMirror Vert: %d \nMirror Hor: %d" % (self.patchSize, self.overlapSize, self.mirror_vert, self.mirror_hor))
        text_file.close()
        
    def resolveNext(self):
        #coordinate of the next one to resolve
        coord = self.idCoordTo2DCoord(np.sum(self.filledMap), np.shape(self.filledMap)) #get 2D coordinate of next to resolve patch
        #get overlap areas of the patch we want to resolve
        overlapArea_Top = self.getOverlapAreaTop(coord)
        overlapArea_Left = self.getOverlapAreaLeft(coord)
        #find most similar patch from the examples
        dist, ind = self.findMostSimilarPatches(overlapArea_Top, overlapArea_Left, coord)
        
        if self.mirror_hor or self.mirror_vert:
            #check that top and left neighbours are not mirrors
            dist, ind = self.checkForMirrors(dist, ind, coord)

        #choose random valid patch
        probabilities = self.distances2probability(dist, self.PARM_truncation, self.PARM_attenuation)
        chosenPatchId = np.random.choice(ind, 1, p=probabilities)
        
        #update canvas
        blend_top = (overlapArea_Top is not None)
        blend_left = (overlapArea_Left is not None)
        self.updateCanvas(chosenPatchId, coord[0], coord[1], blend_top, blend_left)
        
        #update filledMap and id map ;)
        self.filledMap[coord[0], coord[1]] = 1
        self.idMap[coord[0], coord[1]] = chosenPatchId
        
        #visualize
        # self.visualize(coord, chosenPatchId, ind)
        
        self.iter += 1
        
    def visualize(self, coord, chosenPatchId, nonchosenPatchId, showCandidates = True):
        #full visualization includes both example and generated img
        canvasSize = np.shape(self.canvas)
        #insert generated image
        vis = np.zeros((canvasSize[0], canvasSize[1] * 2, 3)) + 0.2
        vis[:, 0:canvasSize[1]] = self.canvas
        #insert example
        exampleHighlited = np.copy(self.exampleMap)
        if showCandidates:
            exampleHighlited = self.hightlightPatchCandidates(chosenPatchId, nonchosenPatchId)
        h = floor(canvasSize[0] / 2)
        w = floor(canvasSize[1] / 2)
        exampleResized = self.resize(exampleHighlited, [h, w])
        offset_h = floor((canvasSize[0] - h) / 2) 
        offset_w = floor((canvasSize[1] - w) / 2)
        
        vis[offset_h:offset_h+h, canvasSize[1]+offset_w:canvasSize[1]+offset_w+w] = exampleResized
        
        #show live update
        plt.imshow(vis)
        clear_output(wait=True)
        display(plt.show())
        
        if self.snapshots:
            img = Image.fromarray(np.uint8(vis*255))
            img = img.resize((self.outputSize[0]*2, self.outputSize[1]), resample=0, box=None)
            img.save(self.outputPath + 'out' + str(self.iter) + '.jpg')
        
    def hightlightPatchCandidates(self, chosenPatchId, nonchosenPatchId):
        
        result = np.copy(self.exampleMap)
        
        #mod patch ID
        chosenPatchId = chosenPatchId[0] % self.total_patches_count
        if len(nonchosenPatchId)>0:
            nonchosenPatchId = nonchosenPatchId % self.total_patches_count
            #exlcude chosen from nonchosen
            nonchosenPatchId = np.delete(nonchosenPatchId, np.where(nonchosenPatchId == chosenPatchId))
            #highlight non chosen candidates
            c = [0.25, 0.9 ,0.45]
            self.highlightPatches(result, nonchosenPatchId, color=c, highlight_width = 4, alpha = 0.5)
        
        #hightlight chosen
        c = [1.0, 0.25, 0.15]
        self.highlightPatches(result, [chosenPatchId], color=c, highlight_width = 4, alpha = 1)
        
        return result
    
    def highlightPatches(self, writeResult, patchesIDs, color, highlight_width = 2, solid = False, alpha = 0.1):
        
        searchWindow = self.patchSize + 2*self.overlapSize
        
        #number of possible steps
        row_steps = floor((np.shape(writeResult)[0] - searchWindow) / self.windowStep) + 1
        col_steps = floor((np.shape(writeResult)[1] - searchWindow) / self.windowStep) + 1 
        
        for i in range(len(patchesIDs)):
            
            chosenPatchId = patchesIDs[i]
            
            #patch Id to step
            patch_row = floor(chosenPatchId / col_steps)
            patch_col = chosenPatchId - patch_row * col_steps
            
            #highlight chosen patch (below are boundaries of the example patch)
            row_start = self.windowStep* patch_row
            row_end = self.windowStep * patch_row + searchWindow
            col_start = self.windowStep * patch_col
            col_end = self.windowStep * patch_col + searchWindow
            
            if not solid:
                w = highlight_width
                overlap = np.copy(writeResult[row_start:row_start+w, col_start:col_end])
                writeResult[row_start:row_start+w, col_start:col_end] = overlap * (1-alpha) + (np.zeros(np.shape(overlap))+color) * alpha #top
                overlap = np.copy(writeResult[row_end-w:row_end, col_start:col_end])
                writeResult[row_end-w:row_end, col_start:col_end] = overlap * (1-alpha) + (np.zeros(np.shape(overlap))+color) * alpha #bot
                overlap = np.copy( writeResult[row_start:row_end, col_start:col_start+w])
                writeResult[row_start:row_end, col_start:col_start+w] = overlap * (1-alpha) + (np.zeros(np.shape(overlap))+color) * alpha #left
                overlap = np.copy(writeResult[row_start:row_end, col_end-w:col_end])
                writeResult[row_start:row_end, col_end-w:col_end] = overlap * (1-alpha) + (np.zeros(np.shape(overlap))+color) * alpha #end
            else:
                a = alpha
                writeResult[row_start:row_end, col_start:col_end] =  writeResult[row_start:row_end, col_start:col_end] * (1-a) + (np.zeros(np.shape(writeResult[row_start:row_end, col_start:col_end]))+color) * a
        
        
    def resize(self, imgArray, targetSize):
        img = Image.fromarray(np.uint8(imgArray*255))
        img = img.resize((targetSize[0], targetSize[1]), resample=0, box=None)
        return np.array(img)/255
        
    def findMostSimilarPatches(self, overlapArea_Top, overlapArea_Left, coord, in_k=5):
        
        #check which KD tree we need to use
        if (overlapArea_Top is not None) and (overlapArea_Left is not None):
            combined = self.getCombinedOverlap(overlapArea_Top.reshape(-1), overlapArea_Left.reshape(-1))
            dist, ind = self.kdtree_combined.query([combined], k=in_k)
        elif overlapArea_Top is not None:
            dist, ind = self.kdtree_topOverlap.query([overlapArea_Top.reshape(-1)], k=in_k)
        elif overlapArea_Left is not None:
            dist, ind = self.kdtree_leftOverlap.query([overlapArea_Left.reshape(-1)], k=in_k)
        else:
            raise Exception("ERROR: no valid overlap area is passed to -findMostSimilarPatch-")
        dist = dist[0]
        ind = ind[0]
        
        return dist, ind
     
    #disallow visually similar blocks to be placed next to each other
    def checkForMirrors(self, dist, ind, coord, thres = 3):
        remove_i = []
        #do I have a top or left neighbour
        if coord[0]-1>-1:
            top_neigh = int(self.idMap[coord[0]-1, coord[1]])
            for i in range(len(ind)): 
                if (abs(ind[i]%self.total_patches_count - top_neigh%self.total_patches_count) < thres):
                    remove_i.append(i)     
        if  coord[1]-1>-1:
            left_neigh = int(self.idMap[coord[0], coord[1]-1])
            for i in range(len(ind)):
                if (abs(ind[i]%self.total_patches_count - left_neigh%self.total_patches_count) < thres):
                    remove_i.append(i)  
        
        dist = np.delete(dist, remove_i)
        ind = np.delete(ind, remove_i)
        
        return dist, ind

        
    def distances2probability(self, distances, PARM_truncation, PARM_attenuation):

        probabilities = 1 - distances / np.max(distances)  
        probabilities *= (probabilities > PARM_truncation)
        probabilities = pow(probabilities, PARM_attenuation) #attenuate the values
        #check if we didn't truncate everything!
        if np.sum(probabilities) == 0:
            #then just revert it
            probabilities = 1 - distances / np.max(distances) 
            probabilities *= (probabilities > PARM_truncation*np.max(probabilities)) # truncate the values (we want top truncate%)
            probabilities = pow(probabilities, PARM_attenuation)
        probabilities /= np.sum(probabilities) #normalize so they add up to one  

        return probabilities
        
    def getOverlapAreaTop(self, coord):
        #do I have a top neighbour
        if coord[0]-1>-1:
            canvasPatch = self.patchCoord2canvasPatch(coord)
            return canvasPatch[0:self.overlapSize, :, :]
        else:
            return None
        
    def getOverlapAreaLeft(self, coord):
        #do I have a left neighbour
        if coord[1]-1>-1:
            canvasPatch = self.patchCoord2canvasPatch(coord)
            return canvasPatch[:, 0:self.overlapSize, :]    
        else:
            return None 
 
    def initKDtrees(self):
        #prepate overlap patches
        topOverlap = self.examplePatches[:, 0:self.overlapSize, :, :]
        leftOverlap = self.examplePatches[:, :, 0:self.overlapSize, :]
        shape_top = np.shape(topOverlap)
        shape_left = np.shape(leftOverlap)
                                   
        flatten_top = topOverlap.reshape(shape_top[0], -1)
        flatten_left = leftOverlap.reshape(shape_left[0], -1)
        flatten_combined = self.getCombinedOverlap(flatten_top, flatten_left) 
        
        tree_top = KDTree(flatten_top)
        tree_left = KDTree(flatten_left)
        tree_combined = KDTree(flatten_combined)
       
        return tree_top, tree_left, tree_combined
    
    #the corner of 2 overlaps is counted double
    def getCombinedOverlap(self, top, left):
        shape = np.shape(top)
        if len(shape) > 1:
            combined = np.zeros((shape[0], shape[1]*2))
            combined[0:shape[0], 0:shape[1]] = top
            combined[0:shape[0], shape[1]:shape[1]*2] = left
        else:
            combined = np.zeros((shape[0]*2))
            combined[0:shape[0]] = top
            combined[shape[0]:shape[0]*2] = left
        return combined

    def initFirstPatch(self):
        #grab a random block 
        patchId = randint(0, np.shape(self.examplePatches)[0])
        #mark out fill map
        self.filledMap[0, 0] = 1
        self.idMap[0, 0] = patchId % self.total_patches_count
        #update canvas
        self.updateCanvas(patchId, 0, 0, False, False)
        #visualize
        # self.visualize([0,0], [patchId], [])

        
    def prepareExamplePatches(self):
        
        searchKernelSize = self.patchSize + 2 * self.overlapSize
        
        result = view_as_windows(self.exampleMap, [searchKernelSize, searchKernelSize, 3] , self.windowStep)
        shape = np.shape(result)
        result = result.reshape(shape[0]*shape[1], searchKernelSize, searchKernelSize, 3)
        
        self.total_patches_count = shape[0]*shape[1]
        
        if self.mirror_hor:
            #flip along horizonal axis
            hor_result = np.zeros(np.shape(result))
            
            for i in range(self.total_patches_count):
                hor_result[i] = result[i][::-1, :, :]
            
            result = np.concatenate((result, hor_result))
        if self.mirror_vert:
            vert_result = np.zeros((shape[0]*shape[1], searchKernelSize, searchKernelSize, 3))
            
            for i in range(self.total_patches_count):
                vert_result[i] = result[i][:, ::-1, :]
            
            result = np.concatenate((result, vert_result))
        
        return result

    def initCanvas(self):
        
        #check whether the outputSize adheres to patch+overlap size
        num_patches_X = ceil((self.outputSize[0]-self.overlapSize)/(self.patchSize+self.overlapSize))
        num_patches_Y = ceil((self.outputSize[1]-self.overlapSize)/(self.patchSize+self.overlapSize))
        #calc needed output image size
        required_size_X = num_patches_X*self.patchSize + (num_patches_X+1)*self.overlapSize
        required_size_Y = num_patches_Y*self.patchSize + (num_patches_X+1)*self.overlapSize
        
        #create empty canvas
        canvas = np.zeros((required_size_X, required_size_Y, 3))
        filledMap = np.zeros((num_patches_X, num_patches_Y)) #map showing which patches have been resolved
        idMap = np.zeros((num_patches_X, num_patches_Y)) - 1 #stores patches id
        
        print("modified output size: ", np.shape(canvas))
        print("number of patches: ", np.shape(filledMap)[0])

        return canvas, filledMap, idMap

    def idCoordTo2DCoord(self, idCoord, imgSize):
        row = int(floor(idCoord / imgSize[0]))
        col = int(idCoord - row * imgSize[1])
        return [row, col]

    def updateCanvas(self, inputPatchId, coord_X, coord_Y, blendTop = False, blendLeft = False):
        #translate Patch coordinate into Canvas coordinate
        x_range = self.patchCoord2canvasCoord(coord_X)
        y_range = self.patchCoord2canvasCoord(coord_Y)
        examplePatch = self.examplePatches[inputPatchId]
        if blendLeft:
            canvasOverlap = self.canvas[x_range[0]:x_range[1], y_range[0]:y_range[0]+self.overlapSize]
            examplePatchOverlap = np.copy(examplePatch[0][:, 0:self.overlapSize])
            examplePatch[0][:, 0:self.overlapSize] = self.linearBlendOverlaps(canvasOverlap, examplePatchOverlap, 'left')
        if blendTop:
            canvasOverlap = self.canvas[x_range[0]:x_range[0]+self.overlapSize, y_range[0]:y_range[1]]
            examplePatchOverlap = np.copy(examplePatch[0][0:self.overlapSize, :])
            examplePatch[0][0:self.overlapSize, :] = self.linearBlendOverlaps(canvasOverlap, examplePatchOverlap, 'top')
        self.canvas[x_range[0]:x_range[1], y_range[0]:y_range[1]] = examplePatch
        
    def linearBlendOverlaps(self, canvasOverlap, examplePatchOverlap, mode):
        if mode == 'left':
            mask = np.repeat(np.arange(self.overlapSize)[np.newaxis, :], np.shape(canvasOverlap)[0], axis=0) / self.overlapSize
        elif mode == 'top':
            mask = np.repeat(np.arange(self.overlapSize)[:, np.newaxis], np.shape(canvasOverlap)[1], axis=1) / self.overlapSize
        mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2) #cast to 3d array
        return canvasOverlap * (1 - mask) + examplePatchOverlap * mask
    
    #def minimumBoundaryError(self, canvasOverlap, examplePatchOverlap, mode)
    
    def patchCoord2canvasCoord(self, coord):
        return [(self.patchSize+self.overlapSize)*coord, (self.patchSize+self.overlapSize)*(coord+1) + self.overlapSize]
    
    def patchCoord2canvasPatch(self, coord):
        x_range = self.patchCoord2canvasCoord(coord[0])
        y_range = self.patchCoord2canvasCoord(coord[1])
        return np.copy(self.canvas[x_range[0]:x_range[1], y_range[0]:y_range[1]])
    
    def loadExampleMap(self, exampleMapPath):
        exampleMap = io.imread(exampleMapPath) #returns an MxNx3 array
        exampleMap = exampleMap / 255.0 #normalize
        #make sure it is 3channel RGB
        if (np.shape(exampleMap)[-1] > 3): 
            exampleMap = exampleMap[:,:,:3] #remove Alpha Channel
        elif (len(np.shape(exampleMap)) == 2):
            exampleMap = np.repeat(exampleMap[np.newaxis, :, :], 3, axis=0) #convert from Grayscale to RGB
        return exampleMap