File size: 1,995 Bytes
31726e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import pydiffvg
import sys
import numpy as np
import torch
sys.path.append("../pydiffvg")

from optimize_svg import OptimizableSvg

pydiffvg.set_use_gpu(False)

"""
for x in range(100000):
    inmat=np.eye(3)
    inmat[0:2,:]=(np.random.rand(2,3)-0.5)*2
    decomp=OptimizableSvg.TransformTools.decompose(inmat)
    outmat=OptimizableSvg.TransformTools.recompose(torch.tensor(decomp[0],dtype=torch.float32),torch.tensor(decomp[1],dtype=torch.float32),torch.tensor(decomp[2],dtype=torch.float32),torch.tensor(decomp[3],dtype=torch.float32)).numpy()
    dif=np.linalg.norm(inmat-outmat)
    if dif > 1e-3:
        print(dif)
        print(inmat)
        print(outmat)
        print(decomp)"""


infile='./imgs/note_small.svg'


canvas_width, canvas_height, shapes, shape_groups = \
	pydiffvg.svg_to_scene(infile)
scene_args = pydiffvg.RenderFunction.serialize_scene(\
	canvas_width, canvas_height, shapes, shape_groups)
render = pydiffvg.RenderFunction.apply
img = render(canvas_width, # width
             canvas_height, # height
             2,   # num_samples_x
             2,   # num_samples_y
             0,   # seed
             None, # background_image
             *scene_args)
# The output image is in linear RGB space. Do Gamma correction before saving the image.
pydiffvg.imwrite(img.cpu(), 'test_old.png', gamma=1.0)

#optim=OptimizableSvg('linux.svg',verbose=True)
optim=OptimizableSvg(infile,verbose=True)

scene=optim.build_scene()
scene_args = pydiffvg.RenderFunction.serialize_scene(*scene)
render = pydiffvg.RenderFunction.apply
img = render(scene[0], # width
             scene[1], # height
             2,   # num_samples_x
             2,   # num_samples_y
             0,   # seed
             None, # background_image
             *scene_args)



with open("resaved.svg","w") as f:
    f.write(optim.write_xml())

# The output image is in linear RGB space. Do Gamma correction before saving the image.
pydiffvg.imwrite(img.cpu(), 'test_new.png', gamma=1.0)

print("Done!")