File size: 5,566 Bytes
31726e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import pydiffvg
import torch
import skimage

# Use GPU if available
pydiffvg.set_use_gpu(torch.cuda.is_available())

canvas_width, canvas_height = 256, 256
num_control_points = torch.tensor([2, 2, 2])
points = torch.tensor([[120.0,  30.0], # base
                       [150.0,  60.0], # control point
                       [ 90.0, 198.0], # control point
                       [ 60.0, 218.0], # base
                       [ 90.0, 180.0], # control point
                       [200.0,  65.0], # control point
                       [210.0,  98.0], # base
                       [220.0,  70.0], # control point
                       [130.0,  55.0]]) # control point
path = pydiffvg.Path(num_control_points = num_control_points,
                     points = points,
                     is_closed = True,
                     stroke_width = torch.tensor(5.0))
shapes = [path]
path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]),
                                 fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0]),
                                 stroke_color = torch.tensor([0.6, 0.3, 0.6, 0.8]))
shape_groups = [path_group]
scene_args = pydiffvg.RenderFunction.serialize_scene(\
    canvas_width, canvas_height, shapes, shape_groups)

render = pydiffvg.RenderFunction.apply
img = render(256, # width
             256, # height
             2,   # num_samples_x
             2,   # num_samples_y
             0,   # seed
             None, # background_image
             *scene_args)
# The output image is in linear RGB space. Do Gamma correction before saving the image.
pydiffvg.imwrite(img.cpu(), 'results/single_curve_outline/target.png', gamma=2.2)
target = img.clone()

# Move the path to produce initial guess
# normalize points for easier learning rate
points_n = torch.tensor([[100.0/256.0,  40.0/256.0], # base
                         [155.0/256.0,  65.0/256.0], # control point
                         [100.0/256.0, 180.0/256.0], # control point
                         [ 65.0/256.0, 238.0/256.0], # base
                         [100.0/256.0, 200.0/256.0], # control point
                         [170.0/256.0,  55.0/256.0], # control point
                         [220.0/256.0, 100.0/256.0], # base
                         [210.0/256.0,  80.0/256.0], # control point
                         [140.0/256.0,  60.0/256.0]], # control point
                        requires_grad = True) 
fill_color = torch.tensor([0.3, 0.2, 0.8, 1.0], requires_grad=True)
stroke_color = torch.tensor([0.4, 0.7, 0.5, 0.5], requires_grad=True)
stroke_width_n = torch.tensor(10.0 / 100.0, requires_grad=True)
path.points = points_n * 256
path.stroke_width = stroke_width_n * 100
path_group.fill_color = fill_color
path_group.stroke_color = stroke_color
scene_args = pydiffvg.RenderFunction.serialize_scene(\
    canvas_width, canvas_height, shapes, shape_groups)
img = render(256, # width
             256, # height
             2,   # num_samples_x
             2,   # num_samples_y
             1,   # seed
             None, # background_image
             *scene_args)
pydiffvg.imwrite(img.cpu(), 'results/single_curve_outline/init.png', gamma=2.2)

# Optimize
optimizer = torch.optim.Adam([points_n, fill_color, stroke_color, stroke_width_n], lr=1e-2)
# Run 200 Adam iterations.
for t in range(200):
    print('iteration:', t)
    optimizer.zero_grad()
    # Forward pass: render the image.
    path.points = points_n * 256
    path.stroke_width = stroke_width_n * 100
    path_group.fill_color = fill_color
    path_group.stroke_color = stroke_color
    scene_args = pydiffvg.RenderFunction.serialize_scene(\
        canvas_width, canvas_height, shapes, shape_groups)
    img = render(256,   # width
                 256,   # height
                 2,     # num_samples_x
                 2,     # num_samples_y
                 t+1,   # seed
                 None, # background_image
                 *scene_args)
    # Save the intermediate render.
    pydiffvg.imwrite(img.cpu(), 'results/single_curve_outline/iter_{}.png'.format(t), gamma=2.2)
    # Compute the loss function. Here it is L2.
    loss = (img - target).pow(2).sum()
    print('loss:', loss.item())

    # Backpropagate the gradients.
    loss.backward()
    # Print the gradients
    print('points_n.grad:', points_n.grad)
    print('fill_color.grad:', fill_color.grad)
    print('stroke_color.grad:', stroke_color.grad)
    print('stroke_width.grad:', stroke_width_n.grad)

    # Take a gradient descent step.
    optimizer.step()
    # Print the current params.
    print('points:', path.points)
    print('fill_color:', path_group.fill_color)
    print('stroke_color:', path_group.stroke_color)
    print('stroke_width:', path.stroke_width)

# Render the final result.
path.points = points_n * 256
path.stroke_width = stroke_width_n * 100
path_group.fill_color = fill_color
path_group.stroke_color = stroke_color
scene_args = pydiffvg.RenderFunction.serialize_scene(\
    canvas_width, canvas_height, shapes, shape_groups)
img = render(256,   # width
             256,   # height
             2,     # num_samples_x
             2,     # num_samples_y
             202,    # seed
             None, # background_image
             *scene_args)
# Save the images and differences.
pydiffvg.imwrite(img.cpu(), 'results/single_curve_outline/final.png')

# Convert the intermediate renderings to a video.
from subprocess import call
call(["ffmpeg", "-framerate", "24", "-i",
    "results/single_curve_outline/iter_%d.png", "-vb", "20M",
    "results/single_curve_outline/out.mp4"])