File size: 4,609 Bytes
31726e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import pydiffvg
import torch
import skimage
import numpy as np

# Use GPU if available
pydiffvg.set_use_gpu(torch.cuda.is_available())

canvas_width, canvas_height = 256, 256
num_control_points = torch.tensor([2, 2, 2])
points = torch.tensor([[120.0,  30.0], # base
                       [150.0,  60.0], # control point
                       [ 90.0, 198.0], # control point
                       [ 60.0, 218.0], # base
                       [ 90.0, 180.0], # control point
                       [200.0,  65.0], # control point
                       [210.0,  98.0], # base
                       [220.0,  70.0], # control point
                       [130.0,  55.0]]) # control point
path = pydiffvg.Path(num_control_points = num_control_points,
                     points = points,
                     is_closed = True)
shapes = [path]
path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]),
                                 fill_color = torch.tensor([0.3, 0.6, 0.3, 1.0]))
shape_groups = [path_group]
scene_args = pydiffvg.RenderFunction.serialize_scene(\
    canvas_width, canvas_height, shapes, shape_groups)

render = pydiffvg.RenderFunction.apply
img = render(256, # width
             256, # height
             2,   # num_samples_x
             2,   # num_samples_y
             0,   # seed
             None,
             *scene_args)
# The output image is in linear RGB space. Do Gamma correction before saving the image.
pydiffvg.imwrite(img.cpu(), 'results/single_curve/target.png', gamma=2.2)
target = img.clone()

# Move the path to produce initial guess
# normalize points for easier learning rate
points_n = torch.tensor([[100.0/256.0,  40.0/256.0], # base
                         [155.0/256.0,  65.0/256.0], # control point
                         [100.0/256.0, 180.0/256.0], # control point
                         [ 65.0/256.0, 238.0/256.0], # base
                         [100.0/256.0, 200.0/256.0], # control point
                         [170.0/256.0,  55.0/256.0], # control point
                         [220.0/256.0, 100.0/256.0], # base
                         [210.0/256.0,  80.0/256.0], # control point
                         [140.0/256.0,  60.0/256.0]], # control point
                        requires_grad = True) 
color = torch.tensor([0.3, 0.2, 0.5, 1.0], requires_grad=True)
path.points = points_n * 256
path_group.fill_color = color
scene_args = pydiffvg.RenderFunction.serialize_scene(\
    canvas_width, canvas_height, shapes, shape_groups)
img = render(256, # width
             256, # height
             2,   # num_samples_x
             2,   # num_samples_y
             1,   # seed
             None,
             *scene_args)
pydiffvg.imwrite(img.cpu(), 'results/single_curve/init.png', gamma=2.2)

# Optimize
optimizer = torch.optim.Adam([points_n, color], lr=1e-2)
# Run 100 Adam iterations.
for t in range(100):
    print('iteration:', t)
    optimizer.zero_grad()
    # Forward pass: render the image.
    path.points = points_n * 256
    path_group.fill_color = color
    scene_args = pydiffvg.RenderFunction.serialize_scene(\
        canvas_width, canvas_height, shapes, shape_groups)
    img = render(256,   # width
                 256,   # height
                 2,     # num_samples_x
                 2,     # num_samples_y
                 t+1,   # seed
                 None,
                 *scene_args)
    # Save the intermediate render.
    pydiffvg.imwrite(img.cpu(), 'results/single_curve/iter_{}.png'.format(t), gamma=2.2)
    # Compute the loss function. Here it is L2.
    loss = (img - target).pow(2).sum()
    print('loss:', loss.item())

    # Backpropagate the gradients.
    loss.backward()
    # Print the gradients
    print('points_n.grad:', points_n.grad)
    print('color.grad:', color.grad)

    # Take a gradient descent step.
    optimizer.step()
    # Print the current params.
    print('points:', path.points)
    print('color:', path_group.fill_color)

# Render the final result.
scene_args = pydiffvg.RenderFunction.serialize_scene(\
    canvas_width, canvas_height, shapes, shape_groups)
img = render(256,   # width
             256,   # height
             2,     # num_samples_x
             2,     # num_samples_y
             102,    # seed
             None,
             *scene_args)
# Save the images and differences.
pydiffvg.imwrite(img.cpu(), 'results/single_curve/final.png')

# Convert the intermediate renderings to a video.
from subprocess import call
call(["ffmpeg", "-framerate", "24", "-i",
    "results/single_curve/iter_%d.png", "-vb", "20M",
    "results/single_curve/out.mp4"])