File size: 9,586 Bytes
31726e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""Retargets an .svg using image-domain seam carving to shrink it."""
import os
import pydiffvg
import argparse
import torch as th
import scipy.ndimage.filters as filters
import numba
import numpy as np
import skimage.io


def energy(im):
    """Compute image energy.

    Args:
        im(np.ndarray) with shape [h, w, 3]: input image.

    Returns:
        (np.ndarray) with shape [h, w]: energy map.
    """
    f_dx = np.array([
        [-1, 0, 1 ],
        [-2, 0, 2 ],
        [-1, 0, 1 ],
    ])
    f_dy = f_dx.T
    dx = filters.convolve(im.mean(2), f_dx)
    dy = filters.convolve(im.mean(2), f_dy)

    return np.abs(dx) + np.abs(dy)


@numba.jit(nopython=True)
def min_seam(e):
    """Finds the seam with minimal cost in an energy map.

    Args:
        e(np.ndarray) with shape [h, w]: energy map.
    
    Returns:
        min_e(np.ndarray) with shape [h, w]: for all (y,x) min_e[y, x]
            is the cost of the minimal seam from 0 to y (top to bottom).
            The minimal seam can be found by looking at the last row of min_e.
            This is computed by dynamic programming.
        argmin_e(np.ndarray) with shape [h, w]: for all (y,x) argmin_e[y, x]
            contains the x coordinate corresponding to this seam in the
            previous row (y-1). We use this for backtracking.
    """
    # initialize to local energy
    min_e = e.copy()
    argmin_e = np.zeros_like(e, dtype=np.int64)

    h, w =  e.shape

    # propagate vertically
    for y in range(1, h):
        for x in range(w):
            if x == 0:
                idx = np.argmin(e[y-1, x:x+2])
                argmin_e[y, x] = idx + x
                mini = e[y-1, x + idx]
            elif x == w-1:
                idx = np.argmin(e[y-1, x-1:x+1])
                argmin_e[y, x] = idx + x - 1
                mini = e[y-1, x + idx - 1]
            else:
                idx = np.argmin(e[y-1, x-1:x+2])
                argmin_e[y, x] = idx + x - 1
                mini = e[y-1, x + idx - 1]

            min_e[y, x] = min_e[y, x] + mini

    return min_e, argmin_e


def carve_seam(im):
    """Carves a vertical seam in an image, reducing it's horizontal size by 1.

    Args:
        im(np.ndarray) with shape [h, w, 3]: input image.

    Returns:
        (np.ndarray) with shape [h, w-1, 1]: the image with one seam removed.
    """

    e = energy(im)
    min_e, argmin_e = min_seam(e)
    h, w =  im.shape[:2]

    # boolean flags for the pixels to preserve
    to_keep = np.ones((h, w), dtype=np.bool)

    # get lowest energy (from last row)
    x = np.argmin(min_e[-1])
    print("carving seam", x, "with energy", min_e[-1, x])

    # backtract to identify the seam
    for y in range(h-1, -1, -1):
        # remove seam pixel
        to_keep[y, x] = False
        x = argmin_e[y, x]

    # replicate mask over color channels
    to_keep = np.stack(3*[to_keep], axis=2)
    new_im = im[to_keep].reshape((h, w-1, 3))
    return new_im


def render(canvas_width, canvas_height, shapes, shape_groups, samples=2):
    _render = pydiffvg.RenderFunction.apply
    scene_args = pydiffvg.RenderFunction.serialize_scene(\
        canvas_width, canvas_height, shapes, shape_groups)

    img = _render(canvas_width, # width
                 canvas_height, # height
                 samples,   # num_samples_x
                 samples,   # num_samples_y
                 0,   # seed
                 None,
                 *scene_args)
    return img


def vector_rescale(shapes, scale_x=1.00, scale_y=1.00):
    new_shapes = []
    for path in shapes:
        path.points[..., 0] *= scale_x
        path.points[..., 1] *= scale_y


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--svg", default=os.path.join("imgs", "hokusai.svg"))
    parser.add_argument("--optim_steps", default=10, type=int)
    parser.add_argument("--lr", default=1e-1, type=int)
    args = parser.parse_args()

    name = os.path.splitext(os.path.basename(args.svg))[0]
    root = os.path.join("results", "seam_carving", name)
    svg_root = os.path.join(root, "svg")
    os.makedirs(root, exist_ok=True)
    os.makedirs(os.path.join(root, "svg"), exist_ok=True)

    pydiffvg.set_use_gpu(False)
    # pydiffvg.set_device(th.device('cuda'))

    # Load SVG
    print("loading svg %s" % args.svg)
    canvas_width, canvas_height, shapes, shape_groups = \
        pydiffvg.svg_to_scene(args.svg)
    print("done loading")

    max_size = 512
    scale_factor = max_size / max(canvas_width, canvas_height)
    print("rescaling from %dx%d with scale %f" % (canvas_width, canvas_height, scale_factor))
    canvas_width = int(canvas_width*scale_factor)
    canvas_height = int(canvas_height*scale_factor)
    print("new shape %dx%d" % (canvas_width, canvas_height))
    vector_rescale(shapes, scale_x=scale_factor, scale_y=scale_factor)

    # Shrink image by 33 %
    # num_seams_to_remove = 2
    num_seams_to_remove = canvas_width // 3
    new_canvas_width  = canvas_width - num_seams_to_remove
    scaling =  new_canvas_width * 1.0 / canvas_width

    # Naive scaling baseline
    print("rendering naive rescaling...")
    vector_rescale(shapes, scale_x=scaling)
    resized = render(new_canvas_width, canvas_height, shapes, shape_groups)
    pydiffvg.imwrite(resized.cpu(), os.path.join(root, 'uniform_scaling.png'), gamma=2.2)
    pydiffvg.save_svg(os.path.join(svg_root, 'uniform_scaling.svg') , canvas_width,
                      canvas_height, shapes, shape_groups, use_gamma=False)
    vector_rescale(shapes, scale_x=1.0/scaling)  # bring back original coordinates
    print("saved naiving scaling")

    # Save initial state
    print("rendering initial state...")
    im = render(canvas_width, canvas_height, shapes, shape_groups)
    pydiffvg.imwrite(im.cpu(), os.path.join(root, 'init.png'), gamma=2.2)
    pydiffvg.save_svg(os.path.join(svg_root, 'init.svg'), canvas_width,
                      canvas_height, shapes, shape_groups, use_gamma=False)
    print("saved initial state")

    # Optimize
    # color_optim = th.optim.Adam(color_vars, lr=0.01)

    retargeted = im[..., :3].cpu().numpy()
    previous_width = canvas_width
    print("carving seams")
    for seam_idx in range(num_seams_to_remove):
        print('\nseam', seam_idx+1, 'of', num_seams_to_remove)

        # Remove a seam
        retargeted = carve_seam(retargeted)

        current_width = canvas_width - seam_idx - 1
        scale_factor = current_width * 1.0 / previous_width
        previous_width = current_width

        padded = np.zeros((canvas_height, canvas_width, 4))
        padded[:, :-seam_idx-1, :3] = retargeted
        padded[:, :-seam_idx-1, -1] = 1.0  # alpha
        padded = th.from_numpy(padded).to(im.device)

        # Remap points to the smaller canvas and
        # collect variables to optimize
        points_vars = []
        # width_vars = []
        mini, maxi = canvas_width, 0
        for path in shapes:
            path.points.requires_grad = False
            x = path.points[..., 0]
            y = path.points[..., 1]
            # rescale

            x = x * scale_factor

            # clip to canvas
            path.points[..., 0] = th.clamp(x, 0, current_width)
            path.points[..., 1] = th.clamp(y, 0, canvas_height)

            path.points.requires_grad = True
            points_vars.append(path.points)
            path.stroke_width.requires_grad = True
            # width_vars.append(path.stroke_width)

            mini = min(mini, path.points.min().item())
            maxi = max(maxi, path.points.max().item())
        print("points", mini, maxi, "scale", scale_factor)

        # recreate an optimizer so we don't carry over the previous update
        # (momentum)?
        geom_optim = th.optim.Adam(points_vars, lr=args.lr)

        for step in range(args.optim_steps):
            geom_optim.zero_grad()

            img = render(canvas_width, canvas_height, shapes, shape_groups,
                         samples=2)

            pydiffvg.imwrite(
                img.cpu(), 
                os.path.join(root, "seam_%03d_iter_%02d.png" % (seam_idx, step)), gamma=2.2)

            # NO alpha
            loss = (img - padded)[..., :3].pow(2).mean()
            # loss = (img - padded).pow(2).mean()
            print('render loss:', loss.item())

            # Backpropagate the gradients.
            loss.backward()

            # Take a gradient descent step.
            geom_optim.step()
        pydiffvg.save_svg(os.path.join(svg_root, "seam%03d.svg" % seam_idx),
                          canvas_width-seam_idx, canvas_height, shapes,
                          shape_groups, use_gamma=False)

        for path in shapes:
            mini = min(mini, path.points.min().item())
            maxi = max(maxi, path.points.max().item())
        print("points", mini, maxi)

    img = render(canvas_width, canvas_height, shapes, shape_groups)
    img = img[:, :-num_seams_to_remove]

    pydiffvg.imwrite(img.cpu(), os.path.join(root, 'final.png'),
                     gamma=2.2)
    pydiffvg.imwrite(retargeted, os.path.join(root, 'ref.png'),
                     gamma=2.2)

    pydiffvg.save_svg(os.path.join(svg_root, 'final.svg'),
                      canvas_width-seam_idx, canvas_height, shapes,
                      shape_groups, use_gamma=False)

    # Convert the intermediate renderings to a video.
    from subprocess import call
    call(["ffmpeg", "-framerate", "24", "-i", os.path.join(root, "seam_%03d_iter_00.png"), "-vb", "20M",
         os.path.join(root, "out.mp4")])


if __name__ == "__main__":
    main()