File size: 6,230 Bytes
31726e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""Evaluate a pretrained GAN model.
Usage:

`python eval_gan.py <path/to/model/folder>`, e.g. 
`../results/quickdraw_gan_vector_bezier_fc_wgan`.

"""
import os
import argparse
import torch as th
import numpy as np
import ttools
import imageio
from subprocess import call

import pydiffvg

import models


LOG = ttools.get_logger(__name__)


def postprocess(im, invert=False):
    im = th.clamp((im + 1.0) / 2.0, 0, 1)
    if invert:
        im = (1.0 - im)
    im = ttools.tensor2image(im)
    return im


def imsave(im, path):
    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.imwrite(path, im)


def save_scene(scn, path):
    os.makedirs(os.path.dirname(path), exist_ok=True)
    pydiffvg.save_svg(path, *scn, use_gamma=False)


def run(args):
    th.manual_seed(0)
    np.random.seed(0)

    meta = ttools.Checkpointer.load_meta(args.model, "vect_g_")

    if meta is None:
        LOG.warning("Could not load metadata at %s, aborting.", args.model)
        return

    LOG.info("Loaded model %s with metadata:\n %s", args.model, meta)

    if args.output_dir is None:
        outdir = os.path.join(args.model, "eval")
    else:
        outdir = args.output_dir
    os.makedirs(outdir, exist_ok=True)

    model_params = meta["model_params"]
    if args.imsize is not None:
        LOG.info("Overriding output image size to: %dx%d", args.imsize,
                 args.imsize)
        old_size = model_params["imsize"]
        scale = args.imsize * 1.0 / old_size
        model_params["imsize"] = args.imsize
        model_params["stroke_width"] = [w*scale for w in
                                        model_params["stroke_width"]]
        LOG.info("Overriding width to: %s", model_params["stroke_width"])

    # task = meta["task"]
    generator = meta["generator"]
    if generator == "fc":
        model = models.VectorGenerator(**model_params)
    elif generator == "bezier_fc":
        model = models.BezierVectorGenerator(**model_params)
    elif generator in ["rnn"]:
        model = models.RNNVectorGenerator(**model_params)
    elif generator in ["chain_rnn"]:
        model = models.ChainRNNVectorGenerator(**model_params)
    else:
        raise NotImplementedError()
    model.eval()

    device = "cpu"
    if th.cuda.is_available():
        device = "cuda"

    model.to(device)

    checkpointer = ttools.Checkpointer(
        args.model, model, meta=meta, prefix="vect_g_")
    checkpointer.load_latest()

    LOG.info("Computing latent space interpolation")
    for i in range(args.nsamples):
        z0 = model.sample_z(1)
        z1 = model.sample_z(1)

        # interpolation
        alpha = th.linspace(0, 1, args.nsteps).view(args.nsteps, 1).to(device)
        alpha_video = th.linspace(0, 1, args.nframes).view(args.nframes, 1)
        alpha_video = alpha_video.to(device)

        length = [args.nsteps, args.nframes]
        for idx, a in enumerate([alpha, alpha_video]):
            _z0 = z0.repeat(length[idx], 1).to(device)
            _z1 = z1.repeat(length[idx], 1).to(device)
            batch = _z0*(1-a) + _z1*a
            out = model(batch)
            if idx == 0:  # image viz
                n, c, h, w = out.shape
                out = out.permute(1, 2, 0, 3)
                out = out.contiguous().view(1, c, h, w*n)
                out = postprocess(out, invert=args.invert)
                imsave(out, os.path.join(outdir,
                                         "latent_interp", "%03d.png" % i))

                scenes = model.get_vector(batch)
                for scn_idx, scn in enumerate(scenes):
                    save_scene(scn, os.path.join(outdir, "latent_interp_svg",
                                                 "%03d" % i, "%03d.svg" %
                                                 scn_idx))
            else:  # video viz
                anim_root = os.path.join(outdir,
                                         "latent_interp_video", "%03d" % i)
                LOG.info("Rendering animation %d", i)
                for frame_idx, frame in enumerate(out):
                    LOG.info("frame %d", frame_idx)
                    frame = frame.unsqueeze(0)
                    frame = postprocess(frame, invert=args.invert)
                    imsave(frame, os.path.join(anim_root,
                                               "frame%04d.png" % frame_idx))
                call(["ffmpeg", "-framerate", "30", "-i",
                      os.path.join(anim_root, "frame%04d.png"), "-vb", "20M",
                     os.path.join(outdir,
                                  "latent_interp_video", "%03d.mp4" % i)])
        LOG.info("  saved %d", i)

    LOG.info("Sampling latent space")

    for i in range(args.nsamples):
        n = 8
        bs = n*n
        z = model.sample_z(bs).to(device)
        out = model(z)
        _, c, h, w = out.shape
        out = out.view(n, n, c, h, w).permute(2, 0, 3, 1, 4)
        out = out.contiguous().view(1, c, h*n, w*n)
        out = postprocess(out)
        imsave(out, os.path.join(outdir, "samples_%03d.png" % i))
        LOG.info("  saved %d", i)

    LOG.info("output images saved to %s", outdir)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument("model")
    parser.add_argument("--output_dir", help="output directory for "
                        " the samples. Defaults to the model's path")
    parser.add_argument("--nsamples", default=16, type=int, 
                        help="number of output to compute")
    parser.add_argument("--imsize", type=int,
                        help="if provided, override the raster output "
                        "resolution")
    parser.add_argument("--nsteps", default=9, type=int, help="number of "
                        "interpolation steps for the interpolation")
    parser.add_argument("--nframes", default=120, type=int, help="number of "
                        "frames for the interpolation video")
    parser.add_argument("--invert", default=False, action="store_true",
                        help="if True, render black on white rather than the"
                        " opposite")

    args = parser.parse_args()

    pydiffvg.set_use_gpu(False)

    ttools.set_logger(False)

    run(args)