Update app.py
Browse files
app.py
CHANGED
@@ -1,201 +1,201 @@
|
|
1 |
-
import time
|
2 |
-
import gradio as gr
|
3 |
-
from openai import OpenAI
|
4 |
-
|
5 |
-
DESCRIPTION = '''
|
6 |
-
# DeepSeek-R1 Distill Qwen-1.5 Demo
|
7 |
-
A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities.
|
8 |
-
'''
|
9 |
-
|
10 |
-
CSS = """
|
11 |
-
.spinner {
|
12 |
-
animation: spin 1s linear infinite;
|
13 |
-
display: inline-block;
|
14 |
-
margin-right: 8px;
|
15 |
-
}
|
16 |
-
@keyframes spin {
|
17 |
-
from { transform: rotate(0deg); }
|
18 |
-
to { transform: rotate(360deg); }
|
19 |
-
}
|
20 |
-
.thinking-summary {
|
21 |
-
cursor: pointer;
|
22 |
-
padding: 8px;
|
23 |
-
background: #f5f5f5;
|
24 |
-
border-radius: 4px;
|
25 |
-
margin: 4px 0;
|
26 |
-
}
|
27 |
-
.thought-content {
|
28 |
-
padding: 10px;
|
29 |
-
background: #f8f9fa;
|
30 |
-
border-radius: 4px;
|
31 |
-
margin: 5px 0;
|
32 |
-
}
|
33 |
-
.thinking-container {
|
34 |
-
border-left: 3px solid #e0e0e0;
|
35 |
-
padding-left: 10px;
|
36 |
-
margin: 8px 0;
|
37 |
-
}
|
38 |
-
details:not([open]) .thinking-container {
|
39 |
-
border-left-color: #4CAF50;
|
40 |
-
}
|
41 |
-
"""
|
42 |
-
|
43 |
-
client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required")
|
44 |
-
|
45 |
-
def user(message, history):
|
46 |
-
return "", history + [[message, None]]
|
47 |
-
|
48 |
-
class ParserState:
|
49 |
-
__slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos']
|
50 |
-
def __init__(self):
|
51 |
-
self.answer = ""
|
52 |
-
self.thought = ""
|
53 |
-
self.in_think = False
|
54 |
-
self.start_time = 0
|
55 |
-
self.last_pos = 0
|
56 |
-
|
57 |
-
def parse_response(text, state):
|
58 |
-
buffer = text[state.last_pos:]
|
59 |
-
state.last_pos = len(text)
|
60 |
-
|
61 |
-
while buffer:
|
62 |
-
if not state.in_think:
|
63 |
-
think_start = buffer.find('<think>')
|
64 |
-
if think_start != -1:
|
65 |
-
state.answer += buffer[:think_start]
|
66 |
-
state.in_think = True
|
67 |
-
state.start_time = time.perf_counter()
|
68 |
-
buffer = buffer[think_start + 7:]
|
69 |
-
else:
|
70 |
-
state.answer += buffer
|
71 |
-
break
|
72 |
-
else:
|
73 |
-
think_end = buffer.find('</think>')
|
74 |
-
if think_end != -1:
|
75 |
-
state.thought += buffer[:think_end]
|
76 |
-
state.in_think = False
|
77 |
-
buffer = buffer[think_end + 8:]
|
78 |
-
else:
|
79 |
-
state.thought += buffer
|
80 |
-
break
|
81 |
-
|
82 |
-
elapsed = time.perf_counter() - state.start_time if state.in_think else 0
|
83 |
-
return state, elapsed
|
84 |
-
|
85 |
-
def format_response(state, elapsed):
|
86 |
-
answer_part = state.answer.replace('<think>', '').replace('</think>', '')
|
87 |
-
collapsible = []
|
88 |
-
|
89 |
-
if state.thought or state.in_think:
|
90 |
-
status = (f"🌀 Thinking for {elapsed:.0f} seconds"
|
91 |
-
if state.in_think else f"✅ Thought for {elapsed:.0f} seconds")
|
92 |
-
collapsible.append(
|
93 |
-
f"<details open><summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>"
|
94 |
-
)
|
95 |
-
|
96 |
-
return collapsible, answer_part
|
97 |
-
|
98 |
-
def generate_response(history, temperature, top_p, max_tokens, active_gen):
|
99 |
-
messages = [{"role": "user", "content": history[-1][0]}]
|
100 |
-
full_response = ""
|
101 |
-
state = ParserState()
|
102 |
-
last_update = 0
|
103 |
-
|
104 |
-
try:
|
105 |
-
stream = client.chat.completions.create(
|
106 |
-
model="",
|
107 |
-
messages=messages,
|
108 |
-
temperature=temperature,
|
109 |
-
top_p=top_p,
|
110 |
-
max_tokens=max_tokens,
|
111 |
-
stream=True
|
112 |
-
)
|
113 |
-
|
114 |
-
for chunk in stream:
|
115 |
-
if not active_gen[0]:
|
116 |
-
break
|
117 |
-
|
118 |
-
if chunk.choices[0].delta.content:
|
119 |
-
full_response += chunk.choices[0].delta.content
|
120 |
-
state, elapsed = parse_response(full_response, state)
|
121 |
-
|
122 |
-
collapsible, answer_part = format_response(state, elapsed)
|
123 |
-
history[-1][1] = "\n\n".join(collapsible + [answer_part]) # Markdown-safe
|
124 |
-
yield history
|
125 |
-
|
126 |
-
# Final update
|
127 |
-
state, elapsed = parse_response(full_response, state)
|
128 |
-
collapsible, answer_part = format_response(state, elapsed)
|
129 |
-
history[-1][1] = "\n\n".join(collapsible + [answer_part]) # Markdown-safe
|
130 |
-
yield history
|
131 |
-
|
132 |
-
except Exception as e:
|
133 |
-
history[-1][1] = f"Error: {str(e)}"
|
134 |
-
yield history
|
135 |
-
finally:
|
136 |
-
active_gen[0] = False
|
137 |
-
|
138 |
-
with gr.Blocks(css=CSS) as demo:
|
139 |
-
gr.Markdown(DESCRIPTION)
|
140 |
-
active_gen = gr.State([False])
|
141 |
-
|
142 |
-
chatbot = gr.Chatbot(
|
143 |
-
elem_id="chatbot",
|
144 |
-
height=500,
|
145 |
-
show_label=False,
|
146 |
-
render_markdown=True
|
147 |
-
)
|
148 |
-
|
149 |
-
with gr.Row():
|
150 |
-
msg = gr.Textbox(
|
151 |
-
label="Message",
|
152 |
-
placeholder="Type your message...",
|
153 |
-
container=False,
|
154 |
-
scale=4
|
155 |
-
)
|
156 |
-
submit_btn = gr.Button("Send", variant='primary', scale=1)
|
157 |
-
|
158 |
-
with gr.Column(scale=2):
|
159 |
-
with gr.Row():
|
160 |
-
clear_btn = gr.Button("Clear", variant='secondary')
|
161 |
-
stop_btn = gr.Button("Stop", variant='stop')
|
162 |
-
|
163 |
-
with gr.Accordion("Parameters", open=False):
|
164 |
-
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature")
|
165 |
-
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
|
166 |
-
max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens")
|
167 |
-
|
168 |
-
gr.Examples(
|
169 |
-
examples=[
|
170 |
-
["How many r's are in the word strawberry?"],
|
171 |
-
["Write 10 funny sentences that end in a fruit!"],
|
172 |
-
["Let's play Tic Tac Toe, I'll start and we'll take turns:
|
173 |
-
],
|
174 |
-
inputs=msg,
|
175 |
-
label="Example Prompts"
|
176 |
-
)
|
177 |
-
|
178 |
-
submit_event = submit_btn.click(
|
179 |
-
user, [msg, chatbot], [msg, chatbot], queue=False
|
180 |
-
).then(
|
181 |
-
lambda: [True], outputs=active_gen
|
182 |
-
).then(
|
183 |
-
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
|
184 |
-
)
|
185 |
-
|
186 |
-
msg.submit(
|
187 |
-
user, [msg, chatbot], [msg, chatbot], queue=False
|
188 |
-
).then(
|
189 |
-
lambda: [True], outputs=active_gen
|
190 |
-
).then(
|
191 |
-
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
|
192 |
-
)
|
193 |
-
|
194 |
-
stop_btn.click(
|
195 |
-
lambda: [False], None, active_gen, cancels=[submit_event]
|
196 |
-
)
|
197 |
-
|
198 |
-
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
199 |
-
|
200 |
-
if __name__ == "__main__":
|
201 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
+
import time
|
2 |
+
import gradio as gr
|
3 |
+
from openai import OpenAI
|
4 |
+
|
5 |
+
DESCRIPTION = '''
|
6 |
+
# DeepSeek-R1 Distill Qwen-1.5 Demo
|
7 |
+
A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities.
|
8 |
+
'''
|
9 |
+
|
10 |
+
CSS = """
|
11 |
+
.spinner {
|
12 |
+
animation: spin 1s linear infinite;
|
13 |
+
display: inline-block;
|
14 |
+
margin-right: 8px;
|
15 |
+
}
|
16 |
+
@keyframes spin {
|
17 |
+
from { transform: rotate(0deg); }
|
18 |
+
to { transform: rotate(360deg); }
|
19 |
+
}
|
20 |
+
.thinking-summary {
|
21 |
+
cursor: pointer;
|
22 |
+
padding: 8px;
|
23 |
+
background: #f5f5f5;
|
24 |
+
border-radius: 4px;
|
25 |
+
margin: 4px 0;
|
26 |
+
}
|
27 |
+
.thought-content {
|
28 |
+
padding: 10px;
|
29 |
+
background: #f8f9fa;
|
30 |
+
border-radius: 4px;
|
31 |
+
margin: 5px 0;
|
32 |
+
}
|
33 |
+
.thinking-container {
|
34 |
+
border-left: 3px solid #e0e0e0;
|
35 |
+
padding-left: 10px;
|
36 |
+
margin: 8px 0;
|
37 |
+
}
|
38 |
+
details:not([open]) .thinking-container {
|
39 |
+
border-left-color: #4CAF50;
|
40 |
+
}
|
41 |
+
"""
|
42 |
+
|
43 |
+
client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required")
|
44 |
+
|
45 |
+
def user(message, history):
|
46 |
+
return "", history + [[message, None]]
|
47 |
+
|
48 |
+
class ParserState:
|
49 |
+
__slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos']
|
50 |
+
def __init__(self):
|
51 |
+
self.answer = ""
|
52 |
+
self.thought = ""
|
53 |
+
self.in_think = False
|
54 |
+
self.start_time = 0
|
55 |
+
self.last_pos = 0
|
56 |
+
|
57 |
+
def parse_response(text, state):
|
58 |
+
buffer = text[state.last_pos:]
|
59 |
+
state.last_pos = len(text)
|
60 |
+
|
61 |
+
while buffer:
|
62 |
+
if not state.in_think:
|
63 |
+
think_start = buffer.find('<think>')
|
64 |
+
if think_start != -1:
|
65 |
+
state.answer += buffer[:think_start]
|
66 |
+
state.in_think = True
|
67 |
+
state.start_time = time.perf_counter()
|
68 |
+
buffer = buffer[think_start + 7:]
|
69 |
+
else:
|
70 |
+
state.answer += buffer
|
71 |
+
break
|
72 |
+
else:
|
73 |
+
think_end = buffer.find('</think>')
|
74 |
+
if think_end != -1:
|
75 |
+
state.thought += buffer[:think_end]
|
76 |
+
state.in_think = False
|
77 |
+
buffer = buffer[think_end + 8:]
|
78 |
+
else:
|
79 |
+
state.thought += buffer
|
80 |
+
break
|
81 |
+
|
82 |
+
elapsed = time.perf_counter() - state.start_time if state.in_think else 0
|
83 |
+
return state, elapsed
|
84 |
+
|
85 |
+
def format_response(state, elapsed):
|
86 |
+
answer_part = state.answer.replace('<think>', '').replace('</think>', '')
|
87 |
+
collapsible = []
|
88 |
+
|
89 |
+
if state.thought or state.in_think:
|
90 |
+
status = (f"🌀 Thinking for {elapsed:.0f} seconds"
|
91 |
+
if state.in_think else f"✅ Thought for {elapsed:.0f} seconds")
|
92 |
+
collapsible.append(
|
93 |
+
f"<details open><summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>"
|
94 |
+
)
|
95 |
+
|
96 |
+
return collapsible, answer_part
|
97 |
+
|
98 |
+
def generate_response(history, temperature, top_p, max_tokens, active_gen):
|
99 |
+
messages = [{"role": "user", "content": history[-1][0]}]
|
100 |
+
full_response = ""
|
101 |
+
state = ParserState()
|
102 |
+
last_update = 0
|
103 |
+
|
104 |
+
try:
|
105 |
+
stream = client.chat.completions.create(
|
106 |
+
model="",
|
107 |
+
messages=messages,
|
108 |
+
temperature=temperature,
|
109 |
+
top_p=top_p,
|
110 |
+
max_tokens=max_tokens,
|
111 |
+
stream=True
|
112 |
+
)
|
113 |
+
|
114 |
+
for chunk in stream:
|
115 |
+
if not active_gen[0]:
|
116 |
+
break
|
117 |
+
|
118 |
+
if chunk.choices[0].delta.content:
|
119 |
+
full_response += chunk.choices[0].delta.content
|
120 |
+
state, elapsed = parse_response(full_response, state)
|
121 |
+
|
122 |
+
collapsible, answer_part = format_response(state, elapsed)
|
123 |
+
history[-1][1] = "\n\n".join(collapsible + [answer_part]) # Markdown-safe
|
124 |
+
yield history
|
125 |
+
|
126 |
+
# Final update
|
127 |
+
state, elapsed = parse_response(full_response, state)
|
128 |
+
collapsible, answer_part = format_response(state, elapsed)
|
129 |
+
history[-1][1] = "\n\n".join(collapsible + [answer_part]) # Markdown-safe
|
130 |
+
yield history
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
history[-1][1] = f"Error: {str(e)}"
|
134 |
+
yield history
|
135 |
+
finally:
|
136 |
+
active_gen[0] = False
|
137 |
+
|
138 |
+
with gr.Blocks(css=CSS) as demo:
|
139 |
+
gr.Markdown(DESCRIPTION)
|
140 |
+
active_gen = gr.State([False])
|
141 |
+
|
142 |
+
chatbot = gr.Chatbot(
|
143 |
+
elem_id="chatbot",
|
144 |
+
height=500,
|
145 |
+
show_label=False,
|
146 |
+
render_markdown=True
|
147 |
+
)
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
msg = gr.Textbox(
|
151 |
+
label="Message",
|
152 |
+
placeholder="Type your message...",
|
153 |
+
container=False,
|
154 |
+
scale=4
|
155 |
+
)
|
156 |
+
submit_btn = gr.Button("Send", variant='primary', scale=1)
|
157 |
+
|
158 |
+
with gr.Column(scale=2):
|
159 |
+
with gr.Row():
|
160 |
+
clear_btn = gr.Button("Clear", variant='secondary')
|
161 |
+
stop_btn = gr.Button("Stop", variant='stop')
|
162 |
+
|
163 |
+
with gr.Accordion("Parameters", open=False):
|
164 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature")
|
165 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
|
166 |
+
max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens")
|
167 |
+
|
168 |
+
gr.Examples(
|
169 |
+
examples=[
|
170 |
+
["How many r's are in the word strawberry?"],
|
171 |
+
["Write 10 funny sentences that end in a fruit!"],
|
172 |
+
["Let's play Tic Tac Toe, I'll start and we'll take turns: \nRow 1: -|-|-\nRow 2: -|-|-\nRow 3: -|-|-\nYour Turn!"]
|
173 |
+
],
|
174 |
+
inputs=msg,
|
175 |
+
label="Example Prompts"
|
176 |
+
)
|
177 |
+
|
178 |
+
submit_event = submit_btn.click(
|
179 |
+
user, [msg, chatbot], [msg, chatbot], queue=False
|
180 |
+
).then(
|
181 |
+
lambda: [True], outputs=active_gen
|
182 |
+
).then(
|
183 |
+
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
|
184 |
+
)
|
185 |
+
|
186 |
+
msg.submit(
|
187 |
+
user, [msg, chatbot], [msg, chatbot], queue=False
|
188 |
+
).then(
|
189 |
+
lambda: [True], outputs=active_gen
|
190 |
+
).then(
|
191 |
+
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
|
192 |
+
)
|
193 |
+
|
194 |
+
stop_btn.click(
|
195 |
+
lambda: [False], None, active_gen, cancels=[submit_event]
|
196 |
+
)
|
197 |
+
|
198 |
+
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|