File size: 5,584 Bytes
01df1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
'''cortex_DIM losses.

'''

import math

import torch
import torch.nn.functional as F

from cortex_DIM.functions.gan_losses import get_positive_expectation, get_negative_expectation


def fenchel_dual_loss(l, g, measure=None):
    '''Computes the f-divergence distance between positive and negative joint distributions.

    Divergences supported are Jensen-Shannon `JSD`, `GAN` (equivalent to JSD),
    Squared Hellinger `H2`, Chi-squeared `X2`, `KL`, and reverse KL `RKL`.

    Args:
        l: Local feature map.
        g: Global features.
        measure: f-divergence measure.

    Returns:
        torch.Tensor: Loss.

    '''
    N, local_units, n_locs = l.size()
    l = l.permute(0, 2, 1)
    l = l.reshape(-1, local_units)

    u = torch.mm(g, l.t())
    u = u.reshape(N, N, -1)
    mask = torch.eye(N).cuda()
    n_mask = 1 - mask

    E_pos = get_positive_expectation(u, measure, average=False).mean(2)
    E_neg = get_negative_expectation(u, measure, average=False).mean(2)
    E_pos = (E_pos * mask).sum() / mask.sum()
    E_neg = (E_neg * n_mask).sum() / n_mask.sum()
    loss = E_neg - E_pos
    return loss


def multi_fenchel_dual_loss(l, m, measure=None):
    '''Computes the f-divergence distance between positive and negative joint distributions.

    Used for multiple globals.

    Divergences supported are Jensen-Shannon `JSD`, `GAN` (equivalent to JSD),
    Squared Hellinger `H2`, Chi-squeared `X2`, `KL`, and reverse KL `RKL`.

    Args:
        l: Local feature map.
        m: Multiple globals feature map.
        measure: f-divergence measure.

    Returns:
        torch.Tensor: Loss.

    '''
    N, units, n_locals = l.size()
    n_multis = m.size(2)

    l = l.view(N, units, n_locals)
    l = l.permute(0, 2, 1)
    l = l.reshape(-1, units)

    m = m.view(N, units, n_multis)
    m = m.permute(0, 2, 1)
    m = m.reshape(-1, units)

    u = torch.mm(m, l.t())
    u = u.reshape(N, n_multis, N, n_locals).permute(0, 2, 3, 1)

    mask = torch.eye(N).cuda()
    n_mask = 1 - mask

    E_pos = get_positive_expectation(u, measure, average=False).mean(2).mean(2)
    E_neg = get_negative_expectation(u, measure, average=False).mean(2).mean(2)
    E_pos = (E_pos * mask).sum() / mask.sum()
    E_neg = (E_neg * n_mask).sum() / n_mask.sum()
    loss = E_neg - E_pos
    return loss


def nce_loss(l, g):
    '''Computes the noise contrastive estimation-based loss.

    Args:
        l: Local feature map.
        g: Global features.

    Returns:
        torch.Tensor: Loss.

    '''
    N, local_units, n_locs = l.size()
    l_p = l.permute(0, 2, 1)
    u_p = torch.matmul(l_p, g.unsqueeze(dim=2))

    l_n = l_p.reshape(-1, local_units)
    u_n = torch.mm(g, l_n.t())
    u_n = u_n.reshape(N, N, n_locs)

    mask = torch.eye(N).unsqueeze(dim=2).cuda()
    n_mask = 1 - mask

    u_n = (n_mask * u_n) - (10. * (1 - n_mask))  # mask out "self" examples
    u_n = u_n.reshape(N, -1).unsqueeze(dim=1).expand(-1, n_locs, -1)

    pred_lgt = torch.cat([u_p, u_n], dim=2)
    pred_log = F.log_softmax(pred_lgt, dim=2)
    loss = -pred_log[:, :, 0].mean()
    return loss


def multi_nce_loss(l, m):
    '''

    Used for multiple globals.

    Args:
        l: Local feature map.
        m: Multiple globals feature map.

    Returns:
        torch.Tensor: Loss.

    '''
    N, units, n_locals = l.size()
    _, _ , n_multis = m.size()

    l = l.view(N, units, n_locals)
    m = m.view(N, units, n_multis)
    l_p = l.permute(0, 2, 1)
    m_p = m.permute(0, 2, 1)
    u_p = torch.matmul(l_p, m).unsqueeze(2)

    l_n = l_p.reshape(-1, units)
    m_n = m_p.reshape(-1, units)
    u_n = torch.mm(m_n, l_n.t())
    u_n = u_n.reshape(N, n_multis, N, n_locals).permute(0, 2, 3, 1)

    mask = torch.eye(N)[:, :, None, None].cuda()
    n_mask = 1 - mask

    u_n = (n_mask * u_n) - (10. * (1 - n_mask))  # mask out "self" examples
    u_n = u_n.reshape(N, N * n_locals, n_multis).unsqueeze(dim=1).expand(-1, n_locals, -1, -1)

    pred_lgt = torch.cat([u_p, u_n], dim=2)
    pred_log = F.log_softmax(pred_lgt, dim=2)
    loss = -pred_log[:, :, 0].mean()

    return loss


def donsker_varadhan_loss(l, g):
    '''

    Args:
        l: Local feature map.
        g: Global features.

    Returns:
        torch.Tensor: Loss.

    '''
    N, local_units, n_locs = l.size()
    l = l.permute(0, 2, 1)
    l = l.reshape(-1, local_units)

    u = torch.mm(g, l.t())
    u = u.reshape(N, N, n_locs)

    mask = torch.eye(N).cuda()
    n_mask = (1 - mask)[:, :, None]

    E_pos = (u.mean(2) * mask).sum() / mask.sum()

    u -= 100 * (1 - n_mask)
    u_max = torch.max(u)
    E_neg = torch.log((n_mask * torch.exp(u - u_max)).sum() + 1e-6) + u_max - math.log(n_mask.sum())
    loss = E_neg - E_pos
    return loss


def multi_donsker_varadhan_loss(l, m):
    '''

    Used for multiple globals.

    Args:
        l: Local feature map.
        m: Multiple globals feature map.

    Returns:
        torch.Tensor: Loss.

    '''
    N, units, n_locals = l.size()
    n_multis = m.size(2)

    l = l.view(N, units, n_locals)
    l = l.permute(0, 2, 1)
    l = l.reshape(-1, units)

    m = m.view(N, units, n_multis)
    m = m.permute(0, 2, 1)
    m = m.reshape(-1, units)

    u = torch.mm(m, l.t())
    u = u.reshape(N, n_multis, N, n_locals).permute(0, 2, 3, 1)

    mask = torch.eye(N).cuda()
    n_mask = 1 - mask

    E_pos = (u.mean(2) * mask).sum() / mask.sum()

    u -= 100 * (1 - n_mask)
    u_max = torch.max(u)
    E_neg = torch.log((n_mask * torch.exp(u - u_max)).sum() + 1e-6) + u_max - math.log(n_mask.sum())
    loss = E_neg - E_pos
    return loss