File size: 6,571 Bytes
ea82708
 
db9ca3d
 
 
 
 
 
 
 
 
9d244dd
 
7f8433e
db9ca3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e8f2bb
 
 
db9ca3d
 
 
 
 
 
7f8433e
db9ca3d
09d535d
 
db9ca3d
d06aa08
db9ca3d
9d244dd
 
 
56372f8
 
7fde816
db9ca3d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import gradio

import torch.nn as nn
import torch
from torch_geometric.loader import DataLoader

import utils.clean_data as cd
import utils.shape_features as sf
import utils.node_features as nf
import utils.edge_features as ef

# from datetime import datetime
# start_time = datetime.now()


node_model_path = 'utils/emb_model/Node_64.pt'
edge_model_path = 'utils/emb_model/Edge_64.pt'


class InfoGraph(nn.Module):
    def __init__(self, hidden_dim, num_gc_layers, alpha=0.5, beta=1., gamma=.1):
        super(InfoGraph, self).__init__()

        self.alpha = alpha
        self.beta = beta
        self.gamma = gamma
        self.prior = False

        self.embedding_dim = mi_units = hidden_dim * num_gc_layers
        self.encoder = Encoder(dataset_num_features, hidden_dim, num_gc_layers)

        self.local_d = FF(self.embedding_dim)
        self.global_d = FF(self.embedding_dim)
        # self.local_d = MI1x1ConvNet(self.embedding_dim, mi_units)
        # self.global_d = MIFCNet(self.embedding_dim, mi_units)

        if self.prior:
            self.prior_d = PriorDiscriminator(self.embedding_dim)

        self.init_emb()

    def init_emb(self):
        initrange = -1.5 / self.embedding_dim
        for m in self.modules():
            if isinstance(m, nn.Linear):
                torch.nn.init.xavier_uniform_(m.weight.data)
                if m.bias is not None:
                    m.bias.data.fill_(0.0)

    def forward(self, x, edge_index, batch, num_graphs):
        # batch_size = data.num_graphs
        if x is None:
            x = torch.ones(batch.shape[0]).to(device)

        y, M = self.encoder(x, edge_index, batch)

        g_enc = self.global_d(y)
        l_enc = self.local_d(M)

        mode='fd'
        measure='JSD'
        local_global_loss = local_global_loss_(l_enc, g_enc, edge_index, batch, measure)

        if self.prior:
            prior = torch.rand_like(y)
            term_a = torch.log(self.prior_d(prior)).mean()
            term_b = torch.log(1.0 - self.prior_d(y)).mean()
            PRIOR = - (term_a + term_b) * self.gamma
        else:
            PRIOR = 0

        return local_global_loss + PRIOR


def outline_embedding(wkt, wall):
    wall_f, wkt_f = cd.read_wall_wkt(wall, wkt)
    apa_wall, apa_geo = cd.clean_geometry(wall_f, wkt_f)

    apa_geo = apa_geo
    apa_line = apa_geo.boundary

    apa_wall_O = cd.exterior_wall(apa_line, apa_wall)
    apa_coor = cd.geo_coor(apa_geo)

    xarr4cv, yarr4cv = apa_geo.exterior.coords.xy
    x4cv = xarr4cv.tolist()
    y4cv = yarr4cv.tolist()

    scale = 100000
    xmin_abs = abs(min(x4cv))
    ymin_abs = abs(min(y4cv))

    p_4_cv = cd.points4cv(x4cv, y4cv, xmin_abs, ymin_abs, scale)

    grid_points = cd.gridpoints(apa_geo, 1)

    Dir_S_longestedge, Dir_N_longestedge, Dir_W_longestedge, Dir_E_longestedge, Dir_S_max, Dir_N_max, Dir_W_max, Dir_E_max, Facade_length, Facade_ratio = sf.wall_direction_ratio(apa_line, apa_wall)
    Perimeter = sf.apartment_perimeter(apa_geo)
    Area = sf.apartment_area(apa_geo)
    BBox_width_x, BBox_height_y, Aspect_ratio, Extent, ULC_x, ULC_y, LRC_x, LRC_y = sf.boundingbox_features(apa_geo)
    Max_diameter = sf.max_diameter(apa_geo)
    Fractality = sf.fractality(apa_geo)
    Circularity = sf.circularity(apa_geo)
    Outer_radius = sf.outer_radius(p_4_cv, xmin_abs, ymin_abs, scale)
    Inner_radius = sf.inner_radius(apa_geo, apa_line)
    Dist_mean, Dist_sigma, Roundness = sf.roundness_features(apa_line)
    Compactness = sf.compactness(apa_geo)
    Equivalent_diameter = sf.equivalent_diameter(apa_geo)
    Shape_membership_index = sf.shape_membership_index(apa_line)
    Convexity, Hull_geo = sf.convexity(p_4_cv, apa_geo, xmin_abs, ymin_abs, scale)
    Rectangularity, Rect_phi, Rect_width, Rect_height = sf.rectangle_features(p_4_cv, apa_geo, xmin_abs, ymin_abs, scale)
    Squareness = sf.squareness(apa_geo)
    Moment_index = sf.moment_index(apa_geo, Convexity, Compactness)
    nDetour_index = sf.ndetour_index(apa_geo, Hull_geo)
    nCohesion_index = sf.ncohesion_index(apa_geo, grid_points)
    nProximity_index, nSpin_index = sf.nproximity_nspin_index(apa_geo, grid_points)
    nExchange_index = sf.nexchange_index(apa_geo)
    nPerimeter_index = sf.nperimeter_index(apa_geo)
    nDepth_index = sf.ndepth_index(apa_geo, apa_line, grid_points)
    nGirth_index = sf.ngirth_index(apa_geo, Inner_radius)
    nRange_index = sf.nrange_index(apa_geo, Outer_radius)
    nTraversal_index = sf.ntraversal_index(apa_geo, apa_line)

    shape = [Dir_S_longestedge, Dir_N_longestedge, Dir_W_longestedge, Dir_E_longestedge, Dir_S_max, Dir_N_max, Dir_W_max, Dir_E_max, Facade_length, Facade_ratio,
	         Perimeter, Area,
	         BBox_width_x, BBox_height_y, Aspect_ratio, Extent, ULC_x, ULC_y, LRC_x, LRC_y,
	         Max_diameter, Fractality, Circularity, Outer_radius, Inner_radius,
	         Dist_mean, Dist_sigma, Roundness,
	         Compactness, Equivalent_diameter, Shape_membership_index, Convexity,
	         Rectangularity, Rect_phi, Rect_width, Rect_height,
	         Squareness, Moment_index, nDetour_index, nCohesion_index,
	         nProximity_index, nExchange_index, nSpin_index, nPerimeter_index,
	         nDepth_index, nGirth_index, nRange_index, nTraversal_index]
    shape = [float(i) for i in shape]
    

    node_graph = nf.node_graph(apa_coor, apa_geo)
    node_model = torch.load(node_model_path)
    node_model.eval()

    node_dataloader = DataLoader(node_graph, batch_size=1)
    node_emb = node_model.encoder.get_embeddings(node_dataloader)
    node = node_emb[0].tolist()


    edge_graph = ef.edge_graph(apa_line, apa_wall)
    edge_model = torch.load(edge_model_path)
    edge_model.eval()
    
    edge_dataloader = DataLoader(edge_graph, batch_size=1)   
    edge_emb = edge_model.encoder.get_embeddings(edge_dataloader)
    edge = edge_emb[0].tolist()

    json = {"edge": edge,
            "shape": shape,
            "node": node}


    return json




gradio_interface = gradio.Interface(fn=outline_embedding,
                                    inputs = [gradio.Textbox(type="text", label="wkt", placeholder="wkt"),
                                              gradio.Textbox(type="text", label="wall", placeholder="wall")],
                                    outputs = "json",
                                    title="outline embedding")


# end_time = datetime.now()
# print('Duration: {}'.format(end_time - start_time))
# api_open=True, 
gradio_interface.queue(max_size=5, status_update_rate="auto")
gradio_interface.launch(show_error=True, enable_queue=True)