Spaces:
Runtime error
Runtime error
File size: 6,571 Bytes
ea82708 db9ca3d 9d244dd 7f8433e db9ca3d 2e8f2bb db9ca3d 7f8433e db9ca3d 09d535d db9ca3d d06aa08 db9ca3d 9d244dd 56372f8 7fde816 db9ca3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio
import torch.nn as nn
import torch
from torch_geometric.loader import DataLoader
import utils.clean_data as cd
import utils.shape_features as sf
import utils.node_features as nf
import utils.edge_features as ef
# from datetime import datetime
# start_time = datetime.now()
node_model_path = 'utils/emb_model/Node_64.pt'
edge_model_path = 'utils/emb_model/Edge_64.pt'
class InfoGraph(nn.Module):
def __init__(self, hidden_dim, num_gc_layers, alpha=0.5, beta=1., gamma=.1):
super(InfoGraph, self).__init__()
self.alpha = alpha
self.beta = beta
self.gamma = gamma
self.prior = False
self.embedding_dim = mi_units = hidden_dim * num_gc_layers
self.encoder = Encoder(dataset_num_features, hidden_dim, num_gc_layers)
self.local_d = FF(self.embedding_dim)
self.global_d = FF(self.embedding_dim)
# self.local_d = MI1x1ConvNet(self.embedding_dim, mi_units)
# self.global_d = MIFCNet(self.embedding_dim, mi_units)
if self.prior:
self.prior_d = PriorDiscriminator(self.embedding_dim)
self.init_emb()
def init_emb(self):
initrange = -1.5 / self.embedding_dim
for m in self.modules():
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, x, edge_index, batch, num_graphs):
# batch_size = data.num_graphs
if x is None:
x = torch.ones(batch.shape[0]).to(device)
y, M = self.encoder(x, edge_index, batch)
g_enc = self.global_d(y)
l_enc = self.local_d(M)
mode='fd'
measure='JSD'
local_global_loss = local_global_loss_(l_enc, g_enc, edge_index, batch, measure)
if self.prior:
prior = torch.rand_like(y)
term_a = torch.log(self.prior_d(prior)).mean()
term_b = torch.log(1.0 - self.prior_d(y)).mean()
PRIOR = - (term_a + term_b) * self.gamma
else:
PRIOR = 0
return local_global_loss + PRIOR
def outline_embedding(wkt, wall):
wall_f, wkt_f = cd.read_wall_wkt(wall, wkt)
apa_wall, apa_geo = cd.clean_geometry(wall_f, wkt_f)
apa_geo = apa_geo
apa_line = apa_geo.boundary
apa_wall_O = cd.exterior_wall(apa_line, apa_wall)
apa_coor = cd.geo_coor(apa_geo)
xarr4cv, yarr4cv = apa_geo.exterior.coords.xy
x4cv = xarr4cv.tolist()
y4cv = yarr4cv.tolist()
scale = 100000
xmin_abs = abs(min(x4cv))
ymin_abs = abs(min(y4cv))
p_4_cv = cd.points4cv(x4cv, y4cv, xmin_abs, ymin_abs, scale)
grid_points = cd.gridpoints(apa_geo, 1)
Dir_S_longestedge, Dir_N_longestedge, Dir_W_longestedge, Dir_E_longestedge, Dir_S_max, Dir_N_max, Dir_W_max, Dir_E_max, Facade_length, Facade_ratio = sf.wall_direction_ratio(apa_line, apa_wall)
Perimeter = sf.apartment_perimeter(apa_geo)
Area = sf.apartment_area(apa_geo)
BBox_width_x, BBox_height_y, Aspect_ratio, Extent, ULC_x, ULC_y, LRC_x, LRC_y = sf.boundingbox_features(apa_geo)
Max_diameter = sf.max_diameter(apa_geo)
Fractality = sf.fractality(apa_geo)
Circularity = sf.circularity(apa_geo)
Outer_radius = sf.outer_radius(p_4_cv, xmin_abs, ymin_abs, scale)
Inner_radius = sf.inner_radius(apa_geo, apa_line)
Dist_mean, Dist_sigma, Roundness = sf.roundness_features(apa_line)
Compactness = sf.compactness(apa_geo)
Equivalent_diameter = sf.equivalent_diameter(apa_geo)
Shape_membership_index = sf.shape_membership_index(apa_line)
Convexity, Hull_geo = sf.convexity(p_4_cv, apa_geo, xmin_abs, ymin_abs, scale)
Rectangularity, Rect_phi, Rect_width, Rect_height = sf.rectangle_features(p_4_cv, apa_geo, xmin_abs, ymin_abs, scale)
Squareness = sf.squareness(apa_geo)
Moment_index = sf.moment_index(apa_geo, Convexity, Compactness)
nDetour_index = sf.ndetour_index(apa_geo, Hull_geo)
nCohesion_index = sf.ncohesion_index(apa_geo, grid_points)
nProximity_index, nSpin_index = sf.nproximity_nspin_index(apa_geo, grid_points)
nExchange_index = sf.nexchange_index(apa_geo)
nPerimeter_index = sf.nperimeter_index(apa_geo)
nDepth_index = sf.ndepth_index(apa_geo, apa_line, grid_points)
nGirth_index = sf.ngirth_index(apa_geo, Inner_radius)
nRange_index = sf.nrange_index(apa_geo, Outer_radius)
nTraversal_index = sf.ntraversal_index(apa_geo, apa_line)
shape = [Dir_S_longestedge, Dir_N_longestedge, Dir_W_longestedge, Dir_E_longestedge, Dir_S_max, Dir_N_max, Dir_W_max, Dir_E_max, Facade_length, Facade_ratio,
Perimeter, Area,
BBox_width_x, BBox_height_y, Aspect_ratio, Extent, ULC_x, ULC_y, LRC_x, LRC_y,
Max_diameter, Fractality, Circularity, Outer_radius, Inner_radius,
Dist_mean, Dist_sigma, Roundness,
Compactness, Equivalent_diameter, Shape_membership_index, Convexity,
Rectangularity, Rect_phi, Rect_width, Rect_height,
Squareness, Moment_index, nDetour_index, nCohesion_index,
nProximity_index, nExchange_index, nSpin_index, nPerimeter_index,
nDepth_index, nGirth_index, nRange_index, nTraversal_index]
shape = [float(i) for i in shape]
node_graph = nf.node_graph(apa_coor, apa_geo)
node_model = torch.load(node_model_path)
node_model.eval()
node_dataloader = DataLoader(node_graph, batch_size=1)
node_emb = node_model.encoder.get_embeddings(node_dataloader)
node = node_emb[0].tolist()
edge_graph = ef.edge_graph(apa_line, apa_wall)
edge_model = torch.load(edge_model_path)
edge_model.eval()
edge_dataloader = DataLoader(edge_graph, batch_size=1)
edge_emb = edge_model.encoder.get_embeddings(edge_dataloader)
edge = edge_emb[0].tolist()
json = {"edge": edge,
"shape": shape,
"node": node}
return json
gradio_interface = gradio.Interface(fn=outline_embedding,
inputs = [gradio.Textbox(type="text", label="wkt", placeholder="wkt"),
gradio.Textbox(type="text", label="wall", placeholder="wall")],
outputs = "json",
title="outline embedding")
# end_time = datetime.now()
# print('Duration: {}'.format(end_time - start_time))
# api_open=True,
gradio_interface.queue(max_size=5, status_update_rate="auto")
gradio_interface.launch(show_error=True, enable_queue=True)
|