Spaces:
Running
Running
File size: 10,744 Bytes
641857b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
from pathlib import Path
from typing import Any
import numpy as np
import torch
from PIL import Image
from ultralytics import YOLO
import identification
import pose
import segmentation
from identification import IdentificationModel
from utils import (
PictureLayout,
crop,
get_picture_layout,
get_segmentation_mask_crop_box,
)
def load_pose_and_segmentation_models(
filepath_weights_segmentation_model: Path,
filepath_weights_pose_model: Path,
) -> dict[str, YOLO]:
"""
Load into memory the models used by the pipeline.
Returns:
segmentation (YOLO): segmentation model.
pose (YOLO): pose estimation model.
"""
model_segmentation = segmentation.load_pretrained_model(
str(filepath_weights_segmentation_model)
)
model_pose = pose.load_pretrained_model(str(filepath_weights_pose_model))
return {
"segmentation": model_segmentation,
"pose": model_pose,
}
def load_models(
filepath_weights_segmentation_model: Path,
filepath_weights_pose_model: Path,
device: torch.device,
filepath_identification_lightglue_features: Path,
filepath_identification_db: Path,
extractor_type: str,
n_keypoints: int,
threshold_wasserstein: float,
) -> dict[str, YOLO | IdentificationModel]:
"""
Load into memory the models used by the pipeline.
Returns:
segmentation (YOLO): segmentation model.
pose (YOLO): pose estimation model.
identification (IdentificationModel): identification model.
"""
loaded_pose_seg_models = load_pose_and_segmentation_models(
filepath_weights_segmentation_model=filepath_weights_segmentation_model,
filepath_weights_pose_model=filepath_weights_pose_model,
)
model_identification = identification.load(
device=device,
filepath_features=filepath_identification_lightglue_features,
filepath_db=filepath_identification_db,
n_keypoints=n_keypoints,
extractor_type=extractor_type,
threshold_wasserstein=threshold_wasserstein,
)
return {**loaded_pose_seg_models, "identification": model_identification}
def run_preprocess(pil_image: Image.Image) -> dict[str, Any]:
"""
Run the preprocess stage of the pipeline.
Args:
pil_image (PIL): original image.
Returns:
pil_image (PIL): rotated image to make it a landscape.
layout (PictureLayout): layout type of the input image.
"""
picture_layout = get_picture_layout(pil_image=pil_image)
# If the image is in Portrait Mode, we turn it into Landscape
pil_image_preprocessed = (
pil_image.rotate(angle=90, expand=True)
if picture_layout == PictureLayout.PORTRAIT
else pil_image
)
return {
"pil_image": pil_image_preprocessed,
"layout": picture_layout,
}
def run_pose(model: YOLO, pil_image: Image.Image) -> dict[str, Any]:
"""
Run the pose stage of the pipeline.
Args:
model (YOLO): loaded pose estimation model.
pil_image (PIL): Image to run the model on.
Returns:
prediction: Raw prediction from the model.
orig_image: original image used for inference after the preprocessing
stages applied by ultralytics.
keypoints_xy (np.ndarray): keypoints in xy format.
keypoints_xyn (np.ndarray): keyoints in xyn format.
theta (float): angle in radians to rotate the image to re-align it
horizontally.
side (FishSide): Predicted side of the fish.
"""
return pose.predict(model=model, pil_image=pil_image)
def run_crop(
pil_image_mask: Image.Image,
pil_image_masked: Image.Image,
padding: int,
) -> dict[str, Any]:
"""
Run the crop on the mask and masked images.
Args:
pil_image_mask (PIL): Image containing the segmentation mask.
pil_image_masked (PIL): Image containing the applied pil_image_mask on
the original image.
padding (int): by how much do we want to pad the result image?
Returns:
box (Tuple[int, int, int, int]): 4 tuple representing a rectangle (x1,
y1, x2, y2) with the upper left corner given first.
pil_image (PIL): cropped masked image.
"""
box_crop = get_segmentation_mask_crop_box(
pil_image_mask=pil_image_mask,
padding=padding,
)
pil_image_masked_cropped = crop(
pil_image=pil_image_masked,
box=box_crop,
)
return {
"box": box_crop,
"pil_image": pil_image_masked_cropped,
}
def run_rotation(
pil_image: Image.Image,
angle_rad: float,
keypoints_xy: np.ndarray,
) -> dict[str, Any]:
"""
Run the rotation stage of the pipeline.
Args:
pil_image (PIL): image to run the rotation on.
angle_rad (float): angle in radian to rotate the image.
keypoints_xy (np.ndarray): keypoints from the pose estimation
prediction in xy format.
Returns:
array_image (np.ndarray): rotated array_image as a 2D numpy array.
keypoints_xy (np.ndarray): rotated keypoints in xy format.
pil_image (PIL): rotated PIL image.
"""
results_rotation = pose.rotate_image_and_keypoints_xy(
angle_rad=angle_rad,
array_image=np.array(pil_image),
keypoints_xy=keypoints_xy,
)
pil_image_rotated = Image.fromarray(results_rotation["array_image"])
return {
"pil_image": pil_image_rotated,
"array_image": results_rotation["array_image"],
"keypoints_xy": results_rotation["keypoints_xy"],
}
def run_segmentation(model: YOLO, pil_image: Image.Image) -> dict[str, Any]:
"""
Run the segmentation stage of the pipeline.
Args:
pil_image (PIL): image to run the rotation on.
model (YOLO): segmentation model.
prediction in xy format.
Returns:
prediction: Raw prediction from the model.
orig_image: original image used for inference
after preprocessing stages applied by
ultralytics.
mask (PIL): postprocessed mask in white and black format - used for visualization
mask_raw (np.ndarray): Raw mask not postprocessed
masked (PIL): mask applied to the pil_image.
"""
results_segmentation = segmentation.predict(
model=model,
pil_image=pil_image,
)
return results_segmentation
def run_pre_identification_stages(
loaded_models: dict[str, YOLO],
pil_image: Image.Image,
param_crop_padding: int = 0,
) -> dict[str, Any]:
"""
Run the partial ML pipeline on `pil_image` up to identifying the fish. It
prepares the input image `pil_image` to make it possible to identify it.
Args:
loaded_models (dict[str, YOLO]): resut of calling `load_models`.
pil_image (PIL): Image to run the pipeline on.
param_crop_padding (int): how much to pad the resulting segmentated
image when cropped.
Returns:
order (list[str]): the stages and their order.
stages (dict[str, Any]): the description of each stage, its
input and output.
"""
# Unpacking the loaded models
model_pose = loaded_models["pose"]
model_segmentation = loaded_models["segmentation"]
# Stage: Preprocess
results_preprocess = run_preprocess(pil_image=pil_image)
# Stage: Pose estimation
pil_image_preprocessed = results_preprocess["pil_image"]
results_pose = run_pose(model=model_pose, pil_image=pil_image_preprocessed)
# Stage: Rotation
results_rotation = run_rotation(
pil_image=pil_image_preprocessed,
keypoints_xy=results_pose["keypoints_xy"],
angle_rad=results_pose["theta"],
)
# Stage: Segmentation
pil_image_rotated = Image.fromarray(results_rotation["array_image"])
results_segmentation = run_segmentation(
model=model_segmentation, pil_image=pil_image_rotated
)
# Stage: Crop
results_crop = run_crop(
pil_image_mask=results_segmentation["mask"],
pil_image_masked=results_segmentation["masked"],
padding=param_crop_padding,
)
return {
"order": [
"preprocess",
"pose",
"rotation",
"segmentation",
"crop",
],
"stages": {
"preprocess": {
"input": {"pil_image": pil_image},
"output": results_preprocess,
},
"pose": {
"input": {"pil_image": pil_image_preprocessed},
"output": results_pose,
},
"rotation": {
"input": {
"pil_image": pil_image_preprocessed,
"angle_rad": results_pose["theta"],
"keypoints_xy": results_pose["keypoints_xy"],
},
"output": results_rotation,
},
"segmentation": {
"input": {"pil_image": pil_image_rotated},
"output": results_segmentation,
},
"crop": {
"input": {
"pil_image_mask": results_segmentation["mask"],
"pil_image_masked": results_segmentation["masked"],
"padding": param_crop_padding,
},
"output": results_crop,
},
},
}
def run(
loaded_models: dict[str, YOLO | IdentificationModel],
pil_image: Image.Image,
param_crop_padding: int = 0,
param_k: int = 3,
) -> dict[str, Any]:
"""
Run the ML pipeline on `pil_image`.
Args:
loaded_models (dict[str, YOLO]): resut of calling `load_models`.
pil_image (PIL): Image to run the pipeline on.
param_crop_padding (int): how much to pad the resulting segmentated
image when cropped.
param_k (int): top k matches to return.
Returns:
order (list[str]): the stages and their order.
stages (dict[str, Any]): the description of each stage, its
input and output.
"""
model_identification = loaded_models["identification"]
results = run_pre_identification_stages(
loaded_models=loaded_models,
pil_image=pil_image,
param_crop_padding=param_crop_padding,
)
results_crop = results["stages"]["crop"]["output"]
results_identification = identification.predict(
model=model_identification,
pil_image=results_crop["pil_image"],
k=param_k,
)
results["order"].append("identification")
results["stages"]["identification"] = {
"input": {"pil_image": results_crop["pil_image"]},
"output": results_identification,
}
return results
|