Luigi's picture
add s2t conversion, enable spk diaraization bydefault
1b8a47d
raw
history blame
9.57 kB
import os
import re
import tempfile
import torch
import gradio as gr
from transformers import pipeline
from pydub import AudioSegment
from pyannote.audio import Pipeline as DiarizationPipeline
import opencc
import spaces # zeroGPU support
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
# —————— Model Lists ——————
WHISPER_MODELS = [
# Base Whisper models
"openai/whisper-large-v3-turbo",
"openai/whisper-large-v3",
"openai/whisper-medium",
"openai/whisper-small",
"openai/whisper-base",
"openai/whisper-tiny",
# Community fine-tuned Chinese models
"JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW",
"Jingmiao/whisper-small-zh_tw",
"DDTChen/whisper-medium-zh-tw",
"kimbochen/whisper-small-zh-tw",
# ...etc...
]
SENSEVOICE_MODELS = [
"FunAudioLLM/SenseVoiceSmall",
"AXERA-TECH/SenseVoice",
"alextomcat/SenseVoiceSmall",
"ChenChenyu/SenseVoiceSmall-finetuned",
"apinge/sensevoice-small",
]
# —————— Language Options ——————
WHISPER_LANGUAGES = [
"auto", "af","am","ar","as","az","ba","be","bg","bn","bo",
"br","bs","ca","cs","cy","da","de","el","en","es","et",
"eu","fa","fi","fo","fr","gl","gu","ha","haw","he","hi",
"hr","ht","hu","hy","id","is","it","ja","jw","ka","kk",
"km","kn","ko","la","lb","ln","lo","lt","lv","mg","mi",
"mk","ml","mn","mr","ms","mt","my","ne","nl","nn","no",
"oc","pa","pl","ps","pt","ro","ru","sa","sd","si","sk",
"sl","sn","so","sq","sr","su","sv","sw","ta","te","tg",
"th","tk","tl","tr","tt","uk","ur","uz","vi","yi","yo",
"zh","yue"
]
SENSEVOICE_LANGUAGES = ["auto", "zh", "yue", "en", "ja", "ko", "nospeech"]
# —————— Caches ——————
whisper_pipes = {}
sense_models = {}
dar_pipe = None
# Initialize OpenCC converter for simplified to traditional Chinese
converter = opencc.OpenCC('s2t.json')
# —————— Helpers ——————
def get_whisper_pipe(model_id: str, device: int):
key = (model_id, device)
if key not in whisper_pipes:
whisper_pipes[key] = pipeline(
"automatic-speech-recognition",
model=model_id,
device=device,
chunk_length_s=30,
stride_length_s=5,
return_timestamps=False,
)
return whisper_pipes[key]
def get_sense_model(model_id: str):
if model_id not in sense_models:
device_str = "cuda:0" if torch.cuda.is_available() else "cpu"
sense_models[model_id] = AutoModel(
model=model_id,
vad_model="fsmn-vad",
vad_kwargs={"max_single_segment_time": 300000},
device=device_str,
hub="hf",
)
return sense_models[model_id]
def get_diarization_pipe():
global dar_pipe
if dar_pipe is None:
# Pull token from environment (HF_TOKEN or HUGGINGFACE_TOKEN)
token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
# Try loading latest 3.1 pipeline, fallback to 2.1 on gated model error
try:
dar_pipe = DiarizationPipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=token or True
)
except Exception as e:
print(f"Failed to load pyannote/speaker-diarization-3.1: {e}\nFalling back to pyannote/[email protected].")
dar_pipe = DiarizationPipeline.from_pretrained(
"pyannote/[email protected]",
use_auth_token=token or True
)
return dar_pipe
# —————— Transcription Functions ——————
def transcribe_whisper(model_id: str,
language: str,
audio_path: str,
device_sel: str,
enable_diar: bool):
# select device: 0 for GPU, -1 for CPU
use_gpu = (device_sel == "GPU" and torch.cuda.is_available())
device = 0 if use_gpu else -1
pipe = get_whisper_pipe(model_id, device)
# full transcription
result = (pipe(audio_path) if language == "auto"
else pipe(audio_path, generate_kwargs={"language": language}))
transcript = result.get("text", "").strip()
# convert simplified Chinese to traditional
transcript = converter.convert(transcript)
diar_text = ""
# optional speaker diarization
if enable_diar:
diarizer = get_diarization_pipe()
diary = diarizer(audio_path)
snippets = []
for turn, _, speaker in diary.itertracks(yield_label=True):
start_ms, end_ms = int(turn.start*1000), int(turn.end*1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
seg_out = (pipe(tmp.name) if language == "auto"
else pipe(tmp.name, generate_kwargs={"language": language}))
os.unlink(tmp.name)
text = seg_out.get("text", "").strip()
# convert simplified Chinese to traditional
text = converter.convert(text)
snippets.append(f"[{speaker}] {text}")
diar_text = "\n".join(snippets)
return transcript, diar_text
@spaces.GPU
def transcribe_sense(model_id: str,
language: str,
audio_path: str,
enable_punct: bool,
enable_diar: bool):
model = get_sense_model(model_id)
# no diarization
if not enable_diar:
segs = model.generate(
input=audio_path,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=True,
merge_length_s=15,
)
text = rich_transcription_postprocess(segs[0]['text'])
if not enable_punct:
text = re.sub(r"[^\w\s]", "", text)
# convert simplified Chinese to traditional
text = converter.convert(text)
return text, ""
# with diarization
diarizer = get_diarization_pipe()
diary = diarizer(audio_path)
snippets = []
for turn, _, speaker in diary.itertracks(yield_label=True):
start_ms, end_ms = int(turn.start*1000), int(turn.end*1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
segs = model.generate(
input=tmp.name,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=False,
merge_length_s=0,
)
os.unlink(tmp.name)
txt = rich_transcription_postprocess(segs[0]['text'])
if not enable_punct:
txt = re.sub(r"[^\w\s]", "", txt)
# convert simplified Chinese to traditional
txt = converter.convert(txt)
snippets.append(f"[{speaker}] {txt}")
full = rich_transcription_postprocess(model.generate(
input=audio_path,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=True,
merge_length_s=15
)[0]['text'])
if not enable_punct:
full = re.sub(r"[^\w\s]", "", full)
full = converter.convert(full)
return full, "\n".join(snippets)
# —————— Gradio UI ——————
demo = gr.Blocks()
with demo:
gr.Markdown("## Whisper vs. SenseVoice (Language, Device & Diarization with Simplified→Traditional Chinese)")
audio_input = gr.Audio(sources=["upload","microphone"], type="filepath", label="Audio Input")
with gr.Row():
with gr.Column():
gr.Markdown("### Whisper ASR")
whisper_dd = gr.Dropdown(choices=WHISPER_MODELS, value=WHISPER_MODELS[0], label="Whisper Model")
whisper_lang = gr.Dropdown(choices=WHISPER_LANGUAGES, value="auto", label="Whisper Language")
device_radio = gr.Radio(choices=["GPU","CPU"], value="GPU", label="Device")
diar_check = gr.Checkbox(label="Enable Diarization", value=True)
btn_w = gr.Button("Transcribe with Whisper")
out_w = gr.Textbox(label="Transcript")
out_w_d = gr.Textbox(label="Diarized Transcript")
btn_w.click(fn=transcribe_whisper,
inputs=[whisper_dd, whisper_lang, audio_input, device_radio, diar_check],
outputs=[out_w, out_w_d])
with gr.Column():
gr.Markdown("### FunASR SenseVoice ASR")
sense_dd = gr.Dropdown(choices=SENSEVOICE_MODELS, value=SENSEVOICE_MODELS[0], label="SenseVoice Model")
sense_lang = gr.Dropdown(choices=SENSEVOICE_LANGUAGES, value="auto", label="SenseVoice Language")
punct_chk = gr.Checkbox(label="Enable Punctuation", value=True)
diar_s_chk = gr.Checkbox(label="Enable Diarization", value=True)
btn_s = gr.Button("Transcribe with SenseVoice")
out_s = gr.Textbox(label="Transcript")
out_s_d = gr.Textbox(label="Diarized Transcript")
btn_s.click(fn=transcribe_sense,
inputs=[sense_dd, sense_lang, audio_input, punct_chk, diar_s_chk],
outputs=[out_s, out_s_d])
if __name__ == "__main__":
demo.launch()