LuciferMorningStar commited on
Commit
0e26089
Β·
1 Parent(s): 8c4f1f4
.DS_Store ADDED
Binary file (6.15 kB). View file
 
Gradio-Space/README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Morningstar Omega
3
+ emoji: πŸ’¬
4
+ colorFrom: yellow
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 5.0.1
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
app.py β†’ Gradio-Space/app.py RENAMED
File without changes
requirements.txt β†’ Gradio-Space/requirements.txt RENAMED
File without changes
Nemotron.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Link
2
+
3
+ <https://huggingface.co/chat/models/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF>
4
+
5
+ ## Model Card: Llama-3.1-Nemotron-70B-Instruct-HF
6
+
7
+ The Llama-3.1-Nemotron-70B-Instruct-HF model is a fine-tuned variant of the Llama-3.1 model, specifically designed for instruction-following tasks. This model card provides an overview of the model's capabilities, limitations, and intended use cases.
8
+
9
+ ## Model Description
10
+
11
+ The Llama-3.1-Nemotron-70B-Instruct-HF model is a transformer-based language model that leverages the power of large-scale pre-training to generate coherent and contextually relevant text. It is trained on a diverse range of tasks, including but not limited to:
12
+
13
+ * Text generation
14
+ * Language translation
15
+ * Question answering
16
+ * Text classification
17
+
18
+ The model's architecture is based on the transformer model introduced in the paper "Attention Is All You Need" by Vaswani et al. in 2017. It consists of an encoder and a decoder, where the encoder processes the input sequence and the decoder generates the output sequence.
19
+
20
+ ### Training Details
21
+
22
+ The Llama-3.1-Nemotron-70B-Instruct-HF model was trained on a large corpus of text data, including but not limited to:
23
+
24
+ * Web pages
25
+ * Books
26
+ * Articles
27
+ * Research papers
28
+
29
+ The training process involved a combination of masked language modeling, next sentence prediction, and other tasks to improve the model's language understanding and generation capabilities.
30
+
31
+ ### Capabilities
32
+
33
+ The Llama-3.1-Nemotron-70B-Instruct-HF model is capable of:
34
+
35
+ * Generating coherent and contextually relevant text based on a given prompt or input
36
+ * Following instructions and generating text that adheres to specific guidelines or formats
37
+ * Answering questions based on the content of a given text or context
38
+ * Translating text from one language to another
39
+ * Classifying text into predefined categories
40
+
41
+ ### Limitations
42
+
43
+ While the Llama-3.1-Nemotron-70B-Instruct-HF model is a powerful tool for natural language processing tasks, it is not without its limitations. Some of the known limitations include:
44
+
45
+ * The model may generate text that is not entirely accurate or relevant to the context, especially in cases where the input prompt is ambiguous or open-ended
46
+ * The model may struggle with tasks that require a deep understanding of specific domains or technical knowledge
47
+ * The model may not always follow instructions precisely, especially if the instructions are complex or open to interpretation
48
+
49
+ ### Intended Use Cases
50
+
51
+ The Llama-3.1-Nemotron-70B-Instruct-HF model is intended for use in a variety of applications, including but not limited to:
52
+
53
+ * Chatbots and virtual assistants
54
+ * Content generation and writing assistance
55
+ * Language translation and localization
56
+ * Question answering and information retrieval
57
+ * Text classification and sentiment analysis
58
+
59
+ ### Ethical Considerations
60
+
61
+ As with any AI model, there are ethical considerations to be taken into account when using the Llama-3.1-Nemotron-70B-Instruct-HF model. Some of the key considerations include:
62
+
63
+ * Ensuring that the model is used in a way that is fair and unbiased
64
+ * Avoiding the use of the model to generate misleading or harmful content
65
+ * Ensuring that the model is transparent and explainable in its decision-making processes
66
+ * Addressing any potential biases or inaccuracies in the model's output
67
+
68
+ By understanding the capabilities and limitations of the Llama-3.1-Nemotron-70B-Instruct-HF model, developers and users can harness its power to create innovative applications that benefit society as a whole.
69
+
70
+ ### Usage Example
71
+
72
+ To use the Llama-3.1-Nemotron-70B-Instruct-HF model, you can initialize it as follows:
73
+
74
+ ```python
75
+ from transformers import pipeline
76
+
77
+ model = pipeline("text-generation", model="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
78
+ output = model("Your input prompt here")
79
+ print(output)
80
+ ```
81
+
82
+ ### Explanation of Updates
83
+
84
+ * **Usage Example**: Added a practical example in `Nemotron.md` to help users understand how to implement the model.
85
+ * **Model Performance Metrics**: Introduced a new section in `README.md` to provide users with insights into how the model's performance is measured.
README.md CHANGED
@@ -1,13 +1,205 @@
1
  ---
2
- title: Morningstar Omega
3
- emoji: πŸ’¬
4
- colorFrom: yellow
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 5.0.1
8
- app_file: app.py
9
- pinned: false
10
  license: mit
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
 
 
 
 
 
2
  license: mit
3
+ base_model:
4
+ - nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
5
+ - nvidia/Llama-3.1-Nemotron-70B-Instruct
6
+ datasets:
7
+ - neuralwork/arxiver
8
+ pipeline_tag: text2text-generation
9
+ tags:
10
+ - Neuroscience
11
+ - chemistry
12
+ - code
13
  ---
14
 
15
+ # Morningstar-Omega Model README
16
+
17
+ ## Project: Morningstar-Omega
18
+
19
+ Welcome to Morningstar-Omega, a text generation model designed to provide state-of-the-art performance in neuroscience and chemistry text generation tasks. This repository contains the model, its documentation, usage guidelines, and licensing information.
20
+
21
+ Repository: Lucius-Morningstar/Morningstar-Omega
22
+ Model Type: Text2Text Generation
23
+ Related Fields: Neuroscience, Chemistry
24
+ Model ID DOI: doi:10.57967/hf/3369
25
+ arXiv Paper: 1910.09700
26
+ License: MIT License
27
+
28
+ ## Model Overview
29
+
30
+ The Morningstar-Omega model leverages advancements in neural networks to generate high-quality, contextually accurate text in response to a given input, focusing particularly on applications in neuroscience and chemistry.
31
+
32
+ ### Model Details
33
+
34
+ β€’ Developed by: [Lucius-Morningstar]
35
+ β€’ Funded by: [optional: Specify Funding Agency]
36
+ β€’ Model Type: Text2Text Generation
37
+ β€’ Languages: English (NLP), with potential for multilingual support
38
+ β€’ License: MIT License
39
+ β€’ Finetuned from: [Original Base Model, if applicable]
40
+
41
+ ### Model Sources
42
+
43
+ β€’ Repository: Lucius-Morningstar/Morningstar-Omega
44
+ β€’ Paper: arXiv:1910.09700
45
+ β€’ Demo: [Add Link to Demo, if available]
46
+
47
+ #### Usage
48
+
49
+ ### Direct Use
50
+
51
+ This model can be used for generating scientific text in neuroscience and chemistry, specifically aimed at applications requiring complex, contextually aware language generation. Ideal for academic, research, and professional environments needing coherent, topic-specific text output.
52
+
53
+ ### Downstream Use
54
+
55
+ Potential downstream applications include:
56
+
57
+ β€’ Automated scientific paper generation
58
+ β€’ Text generation for hypothesis testing in neuroscience and chemistry
59
+ β€’ Educational tools and scientific summarization tasks
60
+
61
+ ## Out-of-Scope Use
62
+
63
+ The model is not recommended for:
64
+
65
+ β€’ Tasks outside scientific and technical domains, as it may lack contextual accuracy in broader fields.
66
+ β€’ Generating personal or sensitive information where text accuracy and ethical considerations are paramount.
67
+
68
+ ### Model Bias, Risks, and Limitations
69
+
70
+ The Morningstar-Omega model, like many large language models, is subject to biases present in its training data. Users should be aware of potential limitations, including:
71
+
72
+ β€’ Bias in Scientific Domains: Training data may reflect predominant theories, leading to a reinforcement of certain scientific biases.
73
+ β€’ Data Gaps: Specific areas in neuroscience or chemistry may be underrepresented.
74
+ β€’ Ethical Considerations: Content generation should comply with ethical standards, especially in academic and professional contexts.
75
+
76
+ ## Recommendations
77
+
78
+ Users should validate the model’s output in scientific contexts and critically assess any generated content for accuracy, especially for high-stakes applications.
79
+
80
+ Getting Started
81
+
82
+ To begin using the model, you can follow these steps:
83
+
84
+ Installation
85
+
86
+ # Clone the repository
87
+
88
+ git clone <https://github.com/Lucius-Morningstar/Morningstar-Omega.git>
89
+ cd Morningstar-Omega
90
+
91
+ # Install dependencies
92
+
93
+ pip install -r requirements.txt
94
+
95
+ Usage Example
96
+
97
+ from morningstar_omega import Model
98
+
99
+ # Initialize model
100
+
101
+ model = Model.load('path/to/pretrained_model')
102
+
103
+ ## Text Generation
104
+
105
+ output = model.generate("Describe the process of synaptic transmission in the brain.")
106
+ print(output)
107
+
108
+ Training Details
109
+
110
+ Training Data
111
+
112
+ The model was trained on a curated dataset combining publicly available resources in neuroscience and chemistry research articles, augmented with domain-specific text to enhance language capabilities.
113
+
114
+ Training Procedure
115
+
116
+ Preprocessing
117
+
118
+ Data was tokenized and cleaned to ensure scientific accuracy and context. Irrelevant or low-quality samples were removed.
119
+
120
+ Training Hyperparameters
121
+
122
+ β€’ Training Regime: Fine-tuning based on neural network hyperparameter optimization.
123
+ β€’ Epochs: [Specify]
124
+ β€’ Batch Size: [Specify]
125
+ β€’ Learning Rate: [Specify]
126
+
127
+ Speeds, Sizes, Times
128
+
129
+ β€’ Model Size: [Model size, e.g., 1.2B parameters]
130
+ β€’ Training Time: [Specify]
131
+
132
+ Evaluation
133
+
134
+ Testing Data, Factors & Metrics
135
+
136
+ Testing Data
137
+
138
+ The model was evaluated using a set of scientific articles and technical documents in neuroscience and chemistry.
139
+
140
+ Factors
141
+
142
+ Evaluation focused on metrics like coherence, relevance to input prompts, factual accuracy, and linguistic diversity.
143
+
144
+ Metrics
145
+
146
+ β€’ Perplexity: [Specify]
147
+ β€’ BLEU Score: [Specify]
148
+ β€’ Accuracy in Factual Generation: [Specify]
149
+
150
+ Results
151
+
152
+ The model achieved [Specify Results] on standard evaluation benchmarks, indicating high performance in scientific text generation.
153
+
154
+ Summary
155
+
156
+ The Morningstar-Omega model is a specialized text generation tool for neuroscience and chemistry applications, delivering precise and relevant language generation capabilities for academic and research use. Its design allows for detailed exploration of scientific topics, enhancing productivity in technical fields.
157
+
158
+ Environmental Impact
159
+
160
+ To assess the environmental footprint of training this model, use the Machine Learning Impact calculator as suggested by Lacoste et al. (2019).
161
+
162
+ β€’ Hardware Type: [e.g., GPU, TPU]
163
+ β€’ Hours Used: [Specify]
164
+ β€’ Cloud Provider: [Specify, if applicable]
165
+ β€’ Compute Region: [Specify, if applicable]
166
+ β€’ Carbon Emitted: [Estimate, if available]
167
+
168
+ Technical Specifications
169
+
170
+ Model Architecture and Objective
171
+
172
+ The model architecture is based on [Specify neural network architecture, e.g., Transformer-based architecture optimized for text-to-text generation].
173
+
174
+ Compute Infrastructure
175
+
176
+ β€’ Hardware: [Specify hardware used during training, e.g., NVIDIA Tesla GPUs]
177
+ β€’ Software Dependencies: Listed in requirements.txt
178
+
179
+ Citation
180
+
181
+ If you use this model in your work, please cite it as follows:
182
+
183
+ BibTeX:
184
+
185
+ @article{lucius2024morningstar,
186
+ title={Morningstar-Omega: Advanced Text Generation for Neuroscience and Chemistry},
187
+ author={Lucius-Morningstar},
188
+ journal={Neuralwork/arxiver},
189
+ doi={10.57967/hf/3369},
190
+ year={2024}
191
+ }
192
+
193
+ APA:
194
+ Lucius-Morningstar. (2024). Morningstar-Omega: Advanced Text Generation for Neuroscience and Chemistry. Neuralwork/arxiver. doi:10.57967/hf/3369.
195
+
196
+ Glossary
197
+
198
+ β€’ Synaptic Transmission: [Define term]
199
+ β€’ Neuroplasticity: [Define term]
200
+ β€’ Molecular Modeling: [Define term]
201
+
202
+ Contact
203
+
204
+ For any questions or issues, please reach out to [Contact Information].
205
+
pipeline.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import pipeline
2
+ from datasets import load_dataset
3
+
4
+ # Initialize the pipeline with the Llama 3.2 model
5
+ model = pipeline("text-generation", model="meta-llama/Llama-3.2-1B")
6
+
7
+ def load_data():
8
+ """
9
+ Load the dataset from the specified source.
10
+
11
+ Returns:
12
+ - Dataset object containing the loaded data.
13
+ """
14
+ try:
15
+ ds = load_dataset("neuralwork/arxiver")
16
+ return ds
17
+ except Exception as e:
18
+ print(f"An error occurred while loading the dataset: {e}")
19
+ return None
20
+
21
+ def generate_text(prompt, max_length=50, num_return_sequences=1, temperature=1.0):
22
+ """
23
+ Generate text using the Llama 3.2 model.
24
+
25
+ Parameters:
26
+ - prompt (str): The input prompt for text generation.
27
+ - max_length (int): The maximum length of the generated text.
28
+ - num_return_sequences (int): The number of sequences to return.
29
+ - temperature (float): Controls the randomness of predictions. Lower values make the output more deterministic.
30
+
31
+ Returns:
32
+ - List of generated text sequences.
33
+ """
34
+ try:
35
+ output = model(prompt, max_length=max_length, num_return_sequences=num_return_sequences, temperature=temperature)
36
+ return [o['generated_text'] for o in output]
37
+ except Exception as e:
38
+ print(f"An error occurred: {e}")
39
+ return []
40
+
41
+ # Example usage
42
+ if __name__ == "__main__":
43
+ # Load the dataset
44
+ dataset = load_data()
45
+ if dataset:
46
+ print("Dataset loaded successfully.")
47
+ # You can access specific splits of the dataset, e.g., dataset['train']
48
+ print(dataset['train'][0]) # Print the first example from the training set
49
+
50
+ prompt = "Describe the process of synaptic transmission in the brain."
51
+ generated_texts = generate_text(prompt, max_length=100, num_return_sequences=3, temperature=0.7)
52
+ for i, text in enumerate(generated_texts):
53
+ print(f"Generated Text {i+1}:\n{text}\n")