import os import streamlit as st from huggingface_hub import HfApi from PIL import Image import sqlite3 import cv2 import numpy as np from tensorflow.keras.models import load_model # Importing load_model from datetime import datetime # Importing datetime # Constants HOME_DIR = os.getcwd() # Home directory (root directory) DATABASE = "students.db" # SQLite database to store student information REPO_NAME = "face-and-emotion-detection" REPO_ID = f"LovnishVerma/{REPO_NAME}" # Hugging Face Repo EMOTION_MODEL_FILE = "CNN_Model_acc_75.h5" # Emotion detection model file EMOTION_LABELS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"] # Retrieve Hugging Face token from environment variable hf_token = os.getenv("upload") if not hf_token: st.error("Hugging Face token not found. Please set the environment variable.") st.stop() # Initialize Hugging Face API api = HfApi() try: api.create_repo(repo_id=REPO_ID, repo_type="space", space_sdk="streamlit", token=hf_token, exist_ok=True) st.success(f"Repository '{REPO_NAME}' is ready on Hugging Face!") except Exception as e: st.error(f"Error creating Hugging Face repository: {e}") # Load the emotion detection model try: # Check if model file exists if not os.path.exists(EMOTION_MODEL_FILE): st.error(f"Error: Emotion model file '{EMOTION_MODEL_FILE}' not found!") st.stop() # Load the model emotion_model = load_model(EMOTION_MODEL_FILE) # Load the emotion model st.success("Emotion detection model loaded successfully!") except Exception as e: st.error(f"Error loading emotion model: {e}") st.stop() # Database Functions def initialize_database(): """ Initializes the SQLite database by creating the students table if it doesn't exist. """ conn = sqlite3.connect(DATABASE) cursor = conn.cursor() cursor.execute(""" CREATE TABLE IF NOT EXISTS students ( id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT NOT NULL, roll_no TEXT NOT NULL UNIQUE, image_url TEXT NOT NULL, timestamp DATETIME DEFAULT CURRENT_TIMESTAMP ) """) conn.commit() conn.close() def save_to_database(name, roll_no, image_url): """ Saves the student's data to the database. """ conn = sqlite3.connect(DATABASE) cursor = conn.cursor() try: cursor.execute(""" INSERT INTO students (name, roll_no, image_url) VALUES (?, ?, ?) """, (name, roll_no, image_url)) conn.commit() st.success("Data saved successfully!") except sqlite3.IntegrityError: st.error("Roll number already exists!") finally: conn.close() def save_image_to_hugging_face(image, name, roll_no): """ Saves the image locally to the HOME_DIR and uploads it to Hugging Face. """ # Construct the local file path filename = f"{name}_{roll_no}_{datetime.now().strftime('%Y%m%d%H%M%S')}.jpg" local_path = os.path.join(HOME_DIR, filename) try: # Convert image to RGB if necessary if image.mode != "RGB": image = image.convert("RGB") # Save the image to the home directory image.save(local_path) # Upload the saved file to Hugging Face api.upload_file( path_or_fileobj=local_path, path_in_repo=filename, repo_id=REPO_ID, repo_type="space", token=hf_token, ) # Construct the image URL for Hugging Face image_url = f"https://{REPO_NAME}.hf.space/media/{filename}" st.success(f"Image saved to Hugging Face as {filename}. URL: {image_url}") except Exception as e: st.error(f"Error saving or uploading image: {e}") return image_url # Initialize the database when the app starts initialize_database() # Streamlit user interface (UI) st.title("Student Registration with Hugging Face Image Upload") # Input fields for student details name = st.text_input("Enter your name") roll_no = st.text_input("Enter your roll number") # Choose input method for the image (webcam or file upload) capture_mode = st.radio("Choose an option to upload your image", ["Use Webcam", "Upload File"]) # Handle webcam capture or file upload if capture_mode == "Use Webcam": picture = st.camera_input("Take a picture") # Capture image using webcam elif capture_mode == "Upload File": picture = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) # Upload image from file system # Save data and process image on button click if st.button("Register"): if not name or not roll_no: st.error("Please fill in both name and roll number.") elif not picture: st.error("Please upload or capture an image.") else: try: # Open the image based on capture mode if capture_mode == "Use Webcam" and picture: image = Image.open(picture) elif capture_mode == "Upload File" and picture: image = Image.open(picture) # Save the image locally and upload it to Hugging Face image_url = save_image_to_hugging_face(image, name, roll_no) save_to_database(name, roll_no, image_url) except Exception as e: st.error(f"An error occurred: {e}") # Display registered student data if st.checkbox("Show registered students"): conn = sqlite3.connect(DATABASE) cursor = conn.cursor() cursor.execute("SELECT name, roll_no, image_url, timestamp FROM students") rows = cursor.fetchall() conn.close() st.write("### Registered Students") for row in rows: name, roll_no, image_url, timestamp = row st.write(f"**Name:** {name}, **Roll No:** {roll_no}, **Timestamp:** {timestamp}") st.image(image_url, caption=f"{name} ({roll_no})", use_column_width=True) # Face and Emotion Detection Function def detect_faces_and_emotions(image): gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=5) for (x, y, w, h) in faces: face = gray_image[y:y+h, x:x+w] resized_face = cv2.resize(face, (48, 48)) # Resize face to 48x48 rgb_face = cv2.cvtColor(resized_face, cv2.COLOR_GRAY2RGB) normalized_face = rgb_face / 255.0 reshaped_face = np.reshape(normalized_face, (1, 48, 48, 3)) # Predict the emotion emotion_prediction = emotion_model.predict(reshaped_face) emotion_label = np.argmax(emotion_prediction) return EMOTION_LABELS[emotion_label] return None # UI for Emotion Detection if st.sidebar.selectbox("Menu", ["Register Student", "Face Recognition and Emotion Detection", "View Attendance"]) == "Face Recognition and Emotion Detection": st.subheader("Recognize Faces and Detect Emotions") action = st.radio("Choose Action", ["Upload Image", "Use Webcam"]) if action == "Upload Image": uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"]) if uploaded_file: img = Image.open(uploaded_file) img_array = np.array(img) emotion_label = detect_faces_and_emotions(img_array) if emotion_label: st.success(f"Emotion Detected: {emotion_label}") else: st.warning("No face detected.") elif action == "Use Webcam": st.info("Use the camera input widget to capture an image.") camera_image = st.camera_input("Take a picture") if camera_image: img = Image.open(camera_image) img_array = np.array(img) emotion_label = detect_faces_and_emotions(img_array) if emotion_label: st.success(f"Emotion Detected: {emotion_label}") else: st.warning("No face detected.")