import streamlit as st import cv2 import numpy as np import time import os from keras.models import load_model from PIL import Image import tempfile # Larger title st.markdown("

Emotion Detection with Face Recognition

", unsafe_allow_html=True) # Smaller subtitle st.markdown("

angry, fear, happy, neutral, sad, surprise

", unsafe_allow_html=True) start = time.time() # Load the emotion model @st.cache_resource def load_emotion_model(): model = load_model('CNN_Model_acc_75.h5') # Ensure this file is in your Space return model model = load_emotion_model() print("time taken to load model: ", time.time() - start) # Emotion labels emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise'] # Load known faces (from images in a folder) known_faces = [] known_names = [] face_recognizer = cv2.face.LBPHFaceRecognizer_create() def load_known_faces(): folder_path = "known_faces" # Place your folder with known faces here for image_name in os.listdir(folder_path): if image_name.endswith(('.jpg', '.jpeg', '.png')): image_path = os.path.join(folder_path, image_name) image = cv2.imread(image_path) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Detect face in the image faces = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml').detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) for (x, y, w, h) in faces: roi_gray = gray[y:y+h, x:x+w] # We only need the face, so we crop it and store it for training known_faces.append(roi_gray) known_names.append(image_name.split('.')[0]) # Assuming file name is the person's name # Train the recognizer with the known faces face_recognizer.train(known_faces, np.array([i for i in range(len(known_faces))])) load_known_faces() # Face detection using OpenCV face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') img_shape = 48 def process_frame(frame): gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) result_text = "" # Initialize the result text for display for (x, y, w, h) in faces: roi_gray = gray_frame[y:y+h, x:x+w] roi_color = frame[y:y+h, x:x+w] face_roi = cv2.resize(roi_color, (img_shape, img_shape)) # Resize to 48x48 face_roi = cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB) # Convert to RGB (3 channels) face_roi = np.expand_dims(face_roi, axis=0) # Add batch dimension face_roi = face_roi / 255.0 # Normalize the image # Emotion detection predictions = model.predict(face_roi) emotion = emotion_labels[np.argmax(predictions[0])] # Face recognition using LBPH label, confidence = face_recognizer.predict(roi_gray) name = "Unknown" if confidence < 100: name = known_names[label] # Format the result text as "Name is feeling Emotion" result_text = f"person is feeling {emotion}" # Draw bounding box and label on the frame cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(frame, result_text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) return frame, result_text # Video feed def video_feed(video_source): frame_placeholder = st.empty() # This placeholder will be used to replace frames in-place text_placeholder = st.empty() # This placeholder will display the result text while True: ret, frame = video_source.read() if not ret: break frame, result_text = process_frame(frame) # Display the frame in the placeholder frame_placeholder.image(frame, channels="BGR", use_column_width=True) # Display the result text in the text placeholder text_placeholder.markdown(f"

{result_text}

", unsafe_allow_html=True) # Sidebar for video or image upload upload_choice = st.sidebar.radio("Choose input source", ["Upload Image", "Upload Video", "Camera"]) if upload_choice == "Camera": # Use Streamlit's built-in camera input widget for capturing images from the webcam image = st.camera_input("Take a picture") if image is not None: # Convert the image to a numpy array frame = np.array(Image.open(image)) frame, result_text = process_frame(frame) st.image(frame, caption='Processed Image', use_column_width=True) st.markdown(f"

{result_text}

", unsafe_allow_html=True) elif upload_choice == "Upload Image": uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg", "gif"]) if uploaded_image: image = Image.open(uploaded_image) frame = np.array(image) frame, result_text = process_frame(frame) st.image(frame, caption='Processed Image', use_column_width=True) st.markdown(f"

{result_text}

", unsafe_allow_html=True) elif upload_choice == "Upload Video": uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"]) if uploaded_video: # Temporarily save the video to disk with tempfile.NamedTemporaryFile(delete=False) as tfile: tfile.write(uploaded_video.read()) video_source = cv2.VideoCapture(tfile.name) video_feed(video_source) st.sidebar.write("Emotion Labels: Angry, Fear, Happy, Neutral, Sad, Surprise")