Update app.py
Browse files
app.py
CHANGED
|
@@ -1,139 +1,58 @@
|
|
| 1 |
-
|
| 2 |
import torch
|
| 3 |
-
import numpy as np
|
| 4 |
from PIL import Image
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 6 |
from diffusers import StableDiffusionPipeline
|
| 7 |
-
from IPython.display import display
|
| 8 |
|
| 9 |
-
|
| 10 |
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
|
|
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
"text-generation",
|
| 17 |
-
model=model,
|
| 18 |
-
tokenizer=tokenizer
|
| 19 |
-
)
|
| 20 |
-
|
| 21 |
-
### --- STEP 2: Load Stable Diffusion XL for High-Quality Images --- ###
|
| 22 |
-
model_id = "stabilityai/sd-turbo" # Best for artistic comic style
|
| 23 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
|
| 24 |
-
pipe.to("cuda")
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
art_styles = {
|
| 42 |
-
"1": "Classic Comic",
|
| 43 |
-
"2": "Anime",
|
| 44 |
-
"3": "Cartoon",
|
| 45 |
-
"4": "Noir",
|
| 46 |
-
"5": "Cyberpunk",
|
| 47 |
-
"6": "Watercolor"
|
| 48 |
-
}
|
| 49 |
-
|
| 50 |
-
print("\n🎨 Choose an Art Style for the Comic:")
|
| 51 |
-
for key, style in art_styles.items():
|
| 52 |
-
print(f"{key}. {style}")
|
| 53 |
-
|
| 54 |
-
while True:
|
| 55 |
-
art_choice = input("\nEnter the number for your preferred art style: ")
|
| 56 |
-
if art_choice in art_styles:
|
| 57 |
-
chosen_style = art_styles[art_choice]
|
| 58 |
-
print(f"✅ You selected: {chosen_style}")
|
| 59 |
-
break
|
| 60 |
-
else:
|
| 61 |
-
print("❌ Invalid choice! Please enter a valid number.")
|
| 62 |
-
|
| 63 |
-
### --- STEP 5: Generate Comic-Style Breakdown Using TinyLlama --- ###
|
| 64 |
-
instruction = (
|
| 65 |
-
f"Generate a structured {num_panels}-panel comic strip description for the topic. "
|
| 66 |
-
"Each panel should have a simple but clear scene description. "
|
| 67 |
-
"Keep it short and focus on visuals for easy image generation.\n\n"
|
| 68 |
-
"Topic: " + user_prompt + "\n\n"
|
| 69 |
-
"Comic Strip Panels:\n"
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
response = comic_pipeline(
|
| 73 |
-
instruction,
|
| 74 |
-
max_new_tokens=400, # Ensure full response
|
| 75 |
-
temperature=0.7,
|
| 76 |
-
repetition_penalty=1.1,
|
| 77 |
-
do_sample=True
|
| 78 |
-
)[0]['generated_text']
|
| 79 |
-
|
| 80 |
-
# Extract only the structured comic description
|
| 81 |
-
comic_breakdown = response.replace(instruction, "").strip()
|
| 82 |
-
comic_panels = [line.strip() for line in comic_breakdown.split("\n") if line.strip()][:num_panels]
|
| 83 |
-
|
| 84 |
-
print("\n🔹 Comic Strip Breakdown:\n", "\n".join(comic_panels)) # Show generated panels
|
| 85 |
-
|
| 86 |
-
### --- STEP 6: Generate High-Quality Comic-Style Images --- ###
|
| 87 |
-
def generate_comic_image(description, style):
|
| 88 |
-
"""
|
| 89 |
-
Generates a comic panel image using Stable Diffusion Turbo.
|
| 90 |
-
"""
|
| 91 |
-
# Validate style input (fallback to "Comic" if invalid)
|
| 92 |
-
valid_styles = ["Comic", "Anime", "Cyberpunk", "Watercolor", "Pixel Art"]
|
| 93 |
-
chosen_style = style if style in valid_styles else "Comic"
|
| 94 |
-
|
| 95 |
-
# Refined prompt (shorter, SD-Turbo-friendly)
|
| 96 |
-
prompt = f"{description}, {chosen_style} style, bold outlines, vibrant colors, dynamic action."
|
| 97 |
-
|
| 98 |
-
# Negative prompt (avoiding unwanted elements)
|
| 99 |
-
negative_prompt = "blurry, distorted, text, watermark, low quality, extra limbs, messy background"
|
| 100 |
-
|
| 101 |
-
try:
|
| 102 |
-
# Generate image with optimized parameters
|
| 103 |
-
image = pipe(
|
| 104 |
-
prompt,
|
| 105 |
-
negative_prompt=negative_prompt,
|
| 106 |
-
num_inference_steps=30, # Faster processing for SD-Turbo
|
| 107 |
-
guidance_scale=7
|
| 108 |
-
).images[0]
|
| 109 |
-
return image
|
| 110 |
-
except Exception as e:
|
| 111 |
-
print(f"❌ Error generating image: {e}")
|
| 112 |
-
return None # Return None if generation fails
|
| 113 |
-
|
| 114 |
-
# Generate images for each panel
|
| 115 |
-
comic_images = [generate_comic_image(panel, chosen_style) for panel in comic_panels]
|
| 116 |
-
|
| 117 |
-
# Remove None values if any images failed to generate
|
| 118 |
-
comic_images = [img for img in comic_images if img is not None]
|
| 119 |
-
|
| 120 |
-
if comic_images:
|
| 121 |
-
### --- STEP 7: Arrange Images in a Grid Based on Panel Count --- ###
|
| 122 |
-
grid_map = {3: (1, 3), 4: (2, 2), 5: (2, 3), 6: (2, 3)}
|
| 123 |
-
rows, cols = grid_map.get(len(comic_images), (1, len(comic_images)))
|
| 124 |
-
|
| 125 |
panel_width, panel_height = comic_images[0].size
|
|
|
|
| 126 |
comic_strip = Image.new("RGB", (panel_width * cols, panel_height * rows))
|
| 127 |
-
|
| 128 |
-
# Paste images in grid format
|
| 129 |
for i, img in enumerate(comic_images):
|
| 130 |
x_offset = (i % cols) * panel_width
|
| 131 |
y_offset = (i // cols) * panel_height
|
| 132 |
comic_strip.paste(img, (x_offset, y_offset))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
|
| 135 |
-
display(comic_strip)
|
| 136 |
-
comic_strip.save("comic_strip.png")
|
| 137 |
-
print("\n✅ Comic strip saved as 'comic_strip.png'")
|
| 138 |
-
else:
|
| 139 |
-
print("\n❌ No images were generated.")
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 5 |
from diffusers import StableDiffusionPipeline
|
|
|
|
| 6 |
|
| 7 |
+
# Load models
|
| 8 |
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 10 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
| 11 |
+
comic_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 12 |
|
| 13 |
+
# Stable Diffusion Model
|
| 14 |
+
model_id = "stabilityai/sd-turbo"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
|
| 16 |
+
pipe.to("cuda")
|
| 17 |
+
|
| 18 |
+
# Function to generate comic strip
|
| 19 |
+
def generate_comic(user_prompt, num_panels, art_choice):
|
| 20 |
+
# Step 1: Generate Comic Panel Descriptions
|
| 21 |
+
instruction = f"Generate a {num_panels}-panel comic strip description for the topic: {user_prompt}"
|
| 22 |
+
response = comic_pipeline(instruction, max_new_tokens=400, temperature=0.7)[0]['generated_text']
|
| 23 |
+
comic_panels = [line.strip() for line in response.split("\n") if line.strip()][:num_panels]
|
| 24 |
+
|
| 25 |
+
# Step 2: Generate Comic Images
|
| 26 |
+
comic_images = []
|
| 27 |
+
for panel in comic_panels:
|
| 28 |
+
prompt = f"{panel}, {art_choice} style, bold outlines, vibrant colors"
|
| 29 |
+
image = pipe(prompt).images[0]
|
| 30 |
+
comic_images.append(image)
|
| 31 |
+
|
| 32 |
+
# Step 3: Create a Grid Layout for Comic Strip
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
panel_width, panel_height = comic_images[0].size
|
| 34 |
+
rows, cols = (1, len(comic_images)) if len(comic_images) <= 3 else (2, 3)
|
| 35 |
comic_strip = Image.new("RGB", (panel_width * cols, panel_height * rows))
|
| 36 |
+
|
|
|
|
| 37 |
for i, img in enumerate(comic_images):
|
| 38 |
x_offset = (i % cols) * panel_width
|
| 39 |
y_offset = (i // cols) * panel_height
|
| 40 |
comic_strip.paste(img, (x_offset, y_offset))
|
| 41 |
+
|
| 42 |
+
return comic_strip
|
| 43 |
+
|
| 44 |
+
# Gradio Interface
|
| 45 |
+
art_styles = ["Classic Comic", "Anime", "Cartoon", "Noir", "Cyberpunk", "Watercolor"]
|
| 46 |
+
interface = gr.Interface(
|
| 47 |
+
fn=generate_comic,
|
| 48 |
+
inputs=[
|
| 49 |
+
gr.Textbox(label="Enter Comic Topic", placeholder="e.g., Iron Man vs Hulk"),
|
| 50 |
+
gr.Slider(minimum=3, maximum=6, step=1, label="Number of Panels"),
|
| 51 |
+
gr.Dropdown(choices=art_styles, label="Choose Art Style")
|
| 52 |
+
],
|
| 53 |
+
outputs="image",
|
| 54 |
+
title="Comic Strip Generator",
|
| 55 |
+
description="Generate your own comic strip by entering a topic, choosing the number of panels, and selecting an art style."
|
| 56 |
+
)
|
| 57 |
|
| 58 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|