Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoProcessor, VoxtralForConditionalGeneration
|
4 |
from pydub import AudioSegment
|
5 |
-
from pydub.silence import
|
6 |
import yt_dlp
|
7 |
import requests
|
8 |
import validators
|
@@ -13,8 +13,103 @@ import re
|
|
13 |
import glob
|
14 |
import spaces
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
#### Functions
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
@spaces.GPU
|
19 |
def process_transcript(language: str, audio_path: str) -> str:
|
20 |
"""Process the audio file to return its transcription.
|
@@ -25,66 +120,105 @@ def process_transcript(language: str, audio_path: str) -> str:
|
|
25 |
|
26 |
Returns:
|
27 |
The transcribed text of the audio.
|
|
|
28 |
"""
|
|
|
|
|
29 |
|
30 |
if audio_path is None:
|
31 |
-
|
32 |
else:
|
33 |
id_language = dict_languages[language]
|
34 |
-
inputs = processor.apply_transcrition_request(language=id_language, audio=audio_path, model_id=model_name)
|
35 |
-
inputs = inputs.to(device, dtype=torch.bfloat16)
|
36 |
-
outputs = model.generate(**inputs, max_new_tokens=MAX_TOKENS)
|
37 |
-
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
###
|
41 |
|
42 |
@spaces.GPU
|
43 |
def process_translate(language: str, audio_path: str) -> str:
|
44 |
-
|
45 |
-
|
46 |
-
"role": "user",
|
47 |
-
"content": [
|
48 |
-
{
|
49 |
-
"type": "audio",
|
50 |
-
"path": audio_path,
|
51 |
-
},
|
52 |
-
{"type": "text", "text": "Translate this in "+language},
|
53 |
-
],
|
54 |
-
}
|
55 |
-
]
|
56 |
-
|
57 |
-
inputs = processor.apply_chat_template(conversation)
|
58 |
-
inputs = inputs.to(device, dtype=torch.bfloat16)
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
###
|
65 |
|
66 |
@spaces.GPU
|
67 |
def process_chat(question: str, audio_path: str) -> str:
|
68 |
-
|
69 |
-
|
70 |
-
"role": "user",
|
71 |
-
"content": [
|
72 |
-
{
|
73 |
-
"type": "audio",
|
74 |
-
"path": audio_path,
|
75 |
-
},
|
76 |
-
{"type": "text", "text": question},
|
77 |
-
],
|
78 |
-
}
|
79 |
-
]
|
80 |
-
|
81 |
-
inputs = processor.apply_chat_template(conversation)
|
82 |
-
inputs = inputs.to(device, dtype=torch.bfloat16)
|
83 |
-
|
84 |
-
outputs = model.generate(**inputs, max_new_tokens=500)
|
85 |
-
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
86 |
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
###
|
89 |
|
90 |
def disable_buttons():
|
@@ -94,6 +228,30 @@ def enable_buttons():
|
|
94 |
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
95 |
###
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
def secure_download_from_url(url: str):
|
98 |
"""
|
99 |
Validates a URL and downloads the file if it is an authorized media.
|
@@ -269,57 +427,15 @@ def clear_audio():
|
|
269 |
return None, None, None, None
|
270 |
###
|
271 |
|
272 |
-
### Initializations
|
273 |
-
|
274 |
-
MAX_TOKENS = 32000
|
275 |
-
|
276 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
277 |
-
print(f"*** Device: {device}")
|
278 |
-
model_name = 'mistralai/Voxtral-Mini-3B-2507'
|
279 |
-
|
280 |
-
processor = AutoProcessor.from_pretrained(model_name)
|
281 |
-
model = VoxtralForConditionalGeneration.from_pretrained(model_name,
|
282 |
-
torch_dtype=torch.bfloat16,
|
283 |
-
device_map=device)
|
284 |
-
# Supported languages
|
285 |
-
dict_languages = {"English": "en",
|
286 |
-
"French": "fr",
|
287 |
-
"German": "de",
|
288 |
-
"Spanish": "es",
|
289 |
-
"Italian": "it",
|
290 |
-
"Portuguese": "pt",
|
291 |
-
"Dutch": "nl",
|
292 |
-
"Hindi": "hi"}
|
293 |
-
|
294 |
-
# Whitelist of allowed MIME types for audio and video
|
295 |
-
ALLOWED_MIME_TYPES = {
|
296 |
-
# Audio
|
297 |
-
'audio/mpeg', 'audio/wav', 'audio/wave', 'audio/x-wav', 'audio/x-pn-wav',
|
298 |
-
'audio/ogg', 'audio/vorbis', 'audio/aac', 'audio/mp4', 'audio/flac',
|
299 |
-
'audio/x-flac', 'audio/opus', 'audio/webm',
|
300 |
-
# Vidéo
|
301 |
-
'video/mp4', 'video/mpeg', 'video/ogg', 'video/webm', 'video/quicktime',
|
302 |
-
'video/x-msvideo', 'video/x-matroska'
|
303 |
-
}
|
304 |
-
|
305 |
-
# Maximum allowed file size (in bytes). Ex: 1 GB
|
306 |
-
MAX_FILE_SIZE = 1 * 1024 * 1024 * 1024 # 1 GB
|
307 |
-
|
308 |
-
# Directory where the files will be saved
|
309 |
-
DOWNLOAD_DIR = "downloaded_files"
|
310 |
-
if not os.path.exists(DOWNLOAD_DIR):
|
311 |
-
os.makedirs(DOWNLOAD_DIR)
|
312 |
|
313 |
|
314 |
#### Gradio interface
|
315 |
with gr.Blocks(title="Voxtral") as voxtral:
|
316 |
-
gr.
|
317 |
-
|
318 |
-
capabilities while retaining best-in-class text performance.
|
319 |
-
#### It excels at speech transcription, translation and audio understanding.""")
|
320 |
|
321 |
-
|
322 |
-
|
323 |
|
324 |
#### Voxtral builds upon Ministral-3B with powerful audio understanding capabilities.
|
325 |
##### - **Dedicated transcription mode**: Voxtral can operate in a pure speech transcription mode to maximize performance. By default, Voxtral automatically predicts the source audio language and transcribes the text accordingly
|
@@ -329,6 +445,9 @@ with gr.Blocks(title="Voxtral") as voxtral:
|
|
329 |
##### - **Function-calling straight from voice**: Enables direct triggering of backend functions, workflows, or API calls based on spoken user intents
|
330 |
##### - **Highly capable at text**: Retains the text understanding capabilities of its language model backbone, Ministral-3B""")
|
331 |
|
|
|
|
|
|
|
332 |
|
333 |
gr.Markdown("### **1.Choose the audio:**")
|
334 |
sel_audio = gr.State()
|
@@ -336,12 +455,12 @@ with gr.Blocks(title="Voxtral") as voxtral:
|
|
336 |
with gr.Tabs():
|
337 |
with gr.Tab("From record or file upload"):
|
338 |
gr.Markdown("### **Upload an audio file, record via microphone, or select a demo file:**")
|
339 |
-
gr.Markdown("### *(Voxtral handles audios up to 30 minutes for transcription)*")
|
340 |
sel_audio1 = gr.Audio(sources=["upload", "microphone"], type="filepath",
|
341 |
label="Set an audio file to process it:")
|
342 |
-
|
343 |
gr.Examples(
|
344 |
-
examples=
|
345 |
inputs=sel_audio1,
|
346 |
outputs=None,
|
347 |
fn=None,
|
@@ -363,6 +482,15 @@ with gr.Blocks(title="Voxtral") as voxtral:
|
|
363 |
gr.Markdown("### **Enter the url of the file (mp3, wav, mp4, ...):**")
|
364 |
url_input2 = gr.Textbox(label="URL (MP3 or MP4 file)",
|
365 |
placeholder="https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/mapo_tofu.mp4")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
download_button2 = gr.Button("Check and upload", variant="primary")
|
367 |
input_audio2 = gr.Audio()
|
368 |
status_output2 = gr.Markdown()
|
@@ -416,23 +544,36 @@ with gr.Blocks(title="Voxtral") as voxtral:
|
|
416 |
)
|
417 |
submit_transcript = gr.Button("Extract transcription", variant="primary")
|
418 |
text_transcript = gr.Textbox(label="💬 Generated transcription", lines=10)
|
|
|
419 |
|
420 |
with gr.Column():
|
421 |
with gr.Accordion("🔁 Translation", open=True):
|
|
|
|
|
422 |
sel_translate_language = gr.Dropdown(
|
423 |
choices=list(dict_languages.keys()),
|
424 |
value="English",
|
425 |
label="Select the language for translation:"
|
426 |
)
|
427 |
-
|
428 |
submit_translate = gr.Button("Translate audio file", variant="primary")
|
429 |
text_translate = gr.Textbox(label="💬 Generated translation", lines=10)
|
|
|
430 |
|
431 |
with gr.Column():
|
432 |
with gr.Accordion("🤖 Ask audio file", open=True):
|
433 |
question_chat = gr.Textbox(label="Enter your question about audio file:", placeholder="Enter your question about audio file")
|
434 |
-
submit_chat = gr.Button("Ask audio file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
text_chat = gr.Textbox(label="💬 Model answer", lines=10)
|
|
|
436 |
|
437 |
### Processing
|
438 |
|
@@ -444,7 +585,7 @@ with gr.Blocks(title="Voxtral") as voxtral:
|
|
444 |
).then(
|
445 |
fn=process_transcript,
|
446 |
inputs=[sel_language, sel_audio],
|
447 |
-
outputs=text_transcript
|
448 |
).then(
|
449 |
enable_buttons,
|
450 |
outputs=[submit_transcript, submit_translate, submit_chat],
|
@@ -458,7 +599,7 @@ with gr.Blocks(title="Voxtral") as voxtral:
|
|
458 |
).then(
|
459 |
fn=process_translate,
|
460 |
inputs=[sel_translate_language, sel_audio],
|
461 |
-
outputs=text_translate
|
462 |
).then(
|
463 |
enable_buttons,
|
464 |
outputs=[submit_transcript, submit_translate, submit_chat],
|
@@ -472,7 +613,7 @@ with gr.Blocks(title="Voxtral") as voxtral:
|
|
472 |
).then(
|
473 |
fn=process_chat,
|
474 |
inputs=[question_chat, sel_audio],
|
475 |
-
outputs=text_chat
|
476 |
).then(
|
477 |
enable_buttons,
|
478 |
outputs=[submit_transcript, submit_translate, submit_chat],
|
@@ -481,4 +622,4 @@ with gr.Blocks(title="Voxtral") as voxtral:
|
|
481 |
### Launch the app
|
482 |
|
483 |
if __name__ == "__main__":
|
484 |
-
voxtral.queue().launch()
|
|
|
2 |
import torch
|
3 |
from transformers import AutoProcessor, VoxtralForConditionalGeneration
|
4 |
from pydub import AudioSegment
|
5 |
+
from pydub.silence import detect_silence
|
6 |
import yt_dlp
|
7 |
import requests
|
8 |
import validators
|
|
|
13 |
import glob
|
14 |
import spaces
|
15 |
|
16 |
+
### Initializations
|
17 |
+
|
18 |
+
MAX_TOKENS = 32000
|
19 |
+
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
print(f"*** Device: {device}")
|
22 |
+
model_name = 'mistralai/Voxtral-Mini-3B-2507'
|
23 |
+
|
24 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
25 |
+
model = VoxtralForConditionalGeneration.from_pretrained(model_name,
|
26 |
+
torch_dtype=torch.bfloat16,
|
27 |
+
device_map=device)
|
28 |
+
# Supported languages
|
29 |
+
dict_languages = {"English": "en",
|
30 |
+
"French": "fr",
|
31 |
+
"German": "de",
|
32 |
+
"Spanish": "es",
|
33 |
+
"Italian": "it",
|
34 |
+
"Portuguese": "pt",
|
35 |
+
"Dutch": "nl",
|
36 |
+
"Hindi": "hi"}
|
37 |
+
|
38 |
+
# Whitelist of allowed MIME types for audio and video
|
39 |
+
ALLOWED_MIME_TYPES = {
|
40 |
+
# Audio
|
41 |
+
'audio/mpeg', 'audio/wav', 'audio/wave', 'audio/x-wav', 'audio/x-pn-wav',
|
42 |
+
'audio/ogg', 'audio/vorbis', 'audio/aac', 'audio/mp4', 'audio/flac',
|
43 |
+
'audio/x-flac', 'audio/opus', 'audio/webm',
|
44 |
+
# Video
|
45 |
+
'video/mp4', 'video/mpeg', 'video/ogg', 'video/webm', 'video/quicktime',
|
46 |
+
'video/x-msvideo', 'video/x-matroska'
|
47 |
+
}
|
48 |
+
|
49 |
+
# Maximum allowed file size (in bytes). Ex: 1 GB
|
50 |
+
MAX_FILE_SIZE = 1 * 1024 * 1024 * 1024 # 1 GB
|
51 |
+
|
52 |
+
# Directory where the files will be saved
|
53 |
+
DOWNLOAD_DIR = "downloaded_files"
|
54 |
+
if not os.path.exists(DOWNLOAD_DIR):
|
55 |
+
os.makedirs(DOWNLOAD_DIR)
|
56 |
+
|
57 |
+
MAX_LEN = 1800000 # 30 mn
|
58 |
+
one_second_silence = AudioSegment.silent(duration=1000)
|
59 |
+
|
60 |
#### Functions
|
61 |
|
62 |
+
@spaces.GPU
|
63 |
+
def chunks_creation(audio_path):
|
64 |
+
list_audio_path = [audio_path]
|
65 |
+
audio = AudioSegment.from_file(audio_path)
|
66 |
+
status = gr.Markdown("👍 Audio duration less than max")
|
67 |
+
# Input too large ?
|
68 |
+
if len(audio) > MAX_LEN:
|
69 |
+
list_audio_path = []
|
70 |
+
try:
|
71 |
+
# Create list of chunks
|
72 |
+
list_silent = detect_silence(audio,min_silence_len=300,
|
73 |
+
# silent if quieter than -14 dBFS threshold
|
74 |
+
silence_thresh=audio.dBFS-14, seek_step=100)
|
75 |
+
list_interval = [(start, stop) for start, stop in list_silent]
|
76 |
+
|
77 |
+
# Calculate speech intervals
|
78 |
+
list_speech = []
|
79 |
+
current_start = 0
|
80 |
+
for start, stop in list_interval:
|
81 |
+
if current_start < start:
|
82 |
+
list_interval.append((current_start, start))
|
83 |
+
current_start = stop
|
84 |
+
# Add last interval if needed
|
85 |
+
if current_start < len(audio):
|
86 |
+
list_speech.append((current_start, len(audio)))
|
87 |
+
|
88 |
+
# Determination of chunks, to fit within the maximum duration
|
89 |
+
list_chunks = []
|
90 |
+
deb_chunk, fin_chunk = 0, list_speech[0][1]
|
91 |
+
|
92 |
+
for start, end in list_speech[1:]:
|
93 |
+
if end - deb_chunk + one_second_silence <= MAX_LEN:
|
94 |
+
fin_chunk = end + one_second_silence
|
95 |
+
else:
|
96 |
+
list_chunks.append([deb_chunk, fin_chunk])
|
97 |
+
deb_chunk, fin_chunk = start, end
|
98 |
+
list_chunks.append([deb_chunk, fin_chunk+one_second_silence])
|
99 |
+
|
100 |
+
# Save chunks
|
101 |
+
for i, (start, stop) in enumerate(list_chunks):
|
102 |
+
segment = audio[start:stop]
|
103 |
+
segment.export(f"chunk_{i}.wav", format="wav")
|
104 |
+
list_audio_path.append(f"chunk_{i}.wav")
|
105 |
+
|
106 |
+
status = f"✅ **Success!** {len(list_audio_path)} chunks saved."
|
107 |
+
except Exception as e:
|
108 |
+
status = gr.Markdown(f"❌ **Unexpected error during chuncks creation:** {e}")
|
109 |
+
|
110 |
+
return list_audio_path, status
|
111 |
+
###
|
112 |
+
|
113 |
@spaces.GPU
|
114 |
def process_transcript(language: str, audio_path: str) -> str:
|
115 |
"""Process the audio file to return its transcription.
|
|
|
120 |
|
121 |
Returns:
|
122 |
The transcribed text of the audio.
|
123 |
+
The status of transcription : with or without chunking.
|
124 |
"""
|
125 |
+
result = ""
|
126 |
+
status = gr.Markdown()
|
127 |
|
128 |
if audio_path is None:
|
129 |
+
status = gr.Markdown("Please provide some input audio: either upload an audio file or use the microphone.")
|
130 |
else:
|
131 |
id_language = dict_languages[language]
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
# Verification of the duration, for possible division into chunks
|
134 |
+
list_audio_path, status = chunks_creation(audio_path)
|
135 |
+
|
136 |
+
# Transcription process
|
137 |
+
try:
|
138 |
+
for path in list_audio_path:
|
139 |
+
inputs = processor.apply_transcrition_request(language=id_language,
|
140 |
+
audio=path, model_id=model_name)
|
141 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
142 |
+
outputs = model.generate(**inputs, max_new_tokens=MAX_TOKENS)
|
143 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:],
|
144 |
+
skip_special_tokens=True)
|
145 |
+
result += decoded_outputs[0]
|
146 |
+
status = "✅ **Success!** Transcription done."
|
147 |
+
except Exception as e:
|
148 |
+
status = gr.Markdown(f"❌ **Unexpected error during transcription:** {e}")
|
149 |
+
|
150 |
+
return result, status
|
151 |
###
|
152 |
|
153 |
@spaces.GPU
|
154 |
def process_translate(language: str, audio_path: str) -> str:
|
155 |
+
result = ""
|
156 |
+
status = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
+
if audio_path is None:
|
159 |
+
status = gr.Markdown("Please provide some input audio: either upload an audio file or use the microphone.")
|
160 |
+
else:
|
161 |
+
try:
|
162 |
+
conversation = [
|
163 |
+
{
|
164 |
+
"role": "user",
|
165 |
+
"content": [
|
166 |
+
{
|
167 |
+
"type": "audio",
|
168 |
+
"path": audio_path,
|
169 |
+
},
|
170 |
+
{"type": "text", "text": "Translate this in "+language},
|
171 |
+
],
|
172 |
+
}
|
173 |
+
]
|
174 |
+
|
175 |
+
inputs = processor.apply_chat_template(conversation)
|
176 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
177 |
+
|
178 |
+
outputs = model.generate(**inputs, max_new_tokens=MAX_TOKENS)
|
179 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
180 |
+
result = decoded_outputs[0]
|
181 |
+
status = "✅ **Success!** Translation done."
|
182 |
+
except Exception as e:
|
183 |
+
status = gr.Markdown(f"❌ **Unexpected error during translation:** {e}")
|
184 |
+
|
185 |
+
return result, status
|
186 |
###
|
187 |
|
188 |
@spaces.GPU
|
189 |
def process_chat(question: str, audio_path: str) -> str:
|
190 |
+
result = ""
|
191 |
+
status = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
if audio_path is None:
|
194 |
+
status = gr.Markdown("Please provide some input audio: either upload an audio file or use the microphone.")
|
195 |
+
else:
|
196 |
+
try:
|
197 |
+
conversation = [
|
198 |
+
{
|
199 |
+
"role": "user",
|
200 |
+
"content": [
|
201 |
+
{
|
202 |
+
"type": "audio",
|
203 |
+
"path": audio_path,
|
204 |
+
},
|
205 |
+
{"type": "text", "text": question},
|
206 |
+
],
|
207 |
+
}
|
208 |
+
]
|
209 |
+
|
210 |
+
inputs = processor.apply_chat_template(conversation)
|
211 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
212 |
+
|
213 |
+
outputs = model.generate(**inputs, max_new_tokens=500)
|
214 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
215 |
+
|
216 |
+
result = decoded_outputs[0]
|
217 |
+
status = "✅ **Success!** Translation done."
|
218 |
+
except Exception as e:
|
219 |
+
status = gr.Markdown(f"❌ **Unexpected error during translation:** {e}")
|
220 |
+
|
221 |
+
return result, status
|
222 |
###
|
223 |
|
224 |
def disable_buttons():
|
|
|
228 |
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
229 |
###
|
230 |
|
231 |
+
def clear_audio():
|
232 |
+
return None, None, None, None
|
233 |
+
###
|
234 |
+
|
235 |
+
@spaces.GPU
|
236 |
+
def voice_extract_demucs():
|
237 |
+
"""
|
238 |
+
Returns the path of the voice extracted file.
|
239 |
+
"""
|
240 |
+
try:
|
241 |
+
cmd = [
|
242 |
+
"demucs",
|
243 |
+
"--two-stems=vocals",
|
244 |
+
"--out", "demucs",
|
245 |
+
"audio_file.wav"
|
246 |
+
]
|
247 |
+
subprocess.run(cmd, check=True)
|
248 |
+
voice_path = os.path.join("demucs", "htdemucs", "audio_file", "vocals.wav")
|
249 |
+
success_message = "✅ **Success!** Voice extracted."
|
250 |
+
return voice_path, voice_path, gr.Markdown(success_message)
|
251 |
+
except Exception as e:
|
252 |
+
return None, None, gr.Markdown(f"❌ **Error:** An unexpected ERROR occurred: {e}")
|
253 |
+
###
|
254 |
+
|
255 |
def secure_download_from_url(url: str):
|
256 |
"""
|
257 |
Validates a URL and downloads the file if it is an authorized media.
|
|
|
427 |
return None, None, None, None
|
428 |
###
|
429 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
|
431 |
|
432 |
#### Gradio interface
|
433 |
with gr.Blocks(title="Voxtral") as voxtral:
|
434 |
+
with gr.Row():
|
435 |
+
gr.Markdown("# **Voxtral Mini Evaluation**")
|
|
|
|
|
436 |
|
437 |
+
with gr.Accordion("🔎 More on Voxtral", open=False):
|
438 |
+
gr.Markdown("""## **Key Features:**
|
439 |
|
440 |
#### Voxtral builds upon Ministral-3B with powerful audio understanding capabilities.
|
441 |
##### - **Dedicated transcription mode**: Voxtral can operate in a pure speech transcription mode to maximize performance. By default, Voxtral automatically predicts the source audio language and transcribes the text accordingly
|
|
|
445 |
##### - **Function-calling straight from voice**: Enables direct triggering of backend functions, workflows, or API calls based on spoken user intents
|
446 |
##### - **Highly capable at text**: Retains the text understanding capabilities of its language model backbone, Ministral-3B""")
|
447 |
|
448 |
+
gr.Markdown("""#### Voxtral Mini is an enhancement of **Ministral 3B**, incorporating state-of-the-art audio input \
|
449 |
+
capabilities while retaining best-in-class text performance. It excels at speech transcription, translation and \
|
450 |
+
audio understanding. Available languages: English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian.""")
|
451 |
|
452 |
gr.Markdown("### **1.Choose the audio:**")
|
453 |
sel_audio = gr.State()
|
|
|
455 |
with gr.Tabs():
|
456 |
with gr.Tab("From record or file upload"):
|
457 |
gr.Markdown("### **Upload an audio file, record via microphone, or select a demo file:**")
|
458 |
+
gr.Markdown("### *(Voxtral handles audios up to 30 minutes for transcription; if longer, it will be cut into chunks)*")
|
459 |
sel_audio1 = gr.Audio(sources=["upload", "microphone"], type="filepath",
|
460 |
label="Set an audio file to process it:")
|
461 |
+
example1 = [["mapo_tofu.mp3"]]
|
462 |
gr.Examples(
|
463 |
+
examples=example1,
|
464 |
inputs=sel_audio1,
|
465 |
outputs=None,
|
466 |
fn=None,
|
|
|
482 |
gr.Markdown("### **Enter the url of the file (mp3, wav, mp4, ...):**")
|
483 |
url_input2 = gr.Textbox(label="URL (MP3 or MP4 file)",
|
484 |
placeholder="https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/mapo_tofu.mp4")
|
485 |
+
example2 = [["https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/mapo_tofu.mp4"]]
|
486 |
+
gr.Examples(
|
487 |
+
examples=example2,
|
488 |
+
inputs=url_input2,
|
489 |
+
outputs=None,
|
490 |
+
fn=None,
|
491 |
+
cache_examples=False,
|
492 |
+
run_on_click=False
|
493 |
+
)
|
494 |
download_button2 = gr.Button("Check and upload", variant="primary")
|
495 |
input_audio2 = gr.Audio()
|
496 |
status_output2 = gr.Markdown()
|
|
|
544 |
)
|
545 |
submit_transcript = gr.Button("Extract transcription", variant="primary")
|
546 |
text_transcript = gr.Textbox(label="💬 Generated transcription", lines=10)
|
547 |
+
status_transcript = gr.Markdown()
|
548 |
|
549 |
with gr.Column():
|
550 |
with gr.Accordion("🔁 Translation", open=True):
|
551 |
+
list_language = list(dict_languages.keys())
|
552 |
+
list_language.pop(list_language.index(sel_language.value)) # Fix: Access the value of the dropdown
|
553 |
sel_translate_language = gr.Dropdown(
|
554 |
choices=list(dict_languages.keys()),
|
555 |
value="English",
|
556 |
label="Select the language for translation:"
|
557 |
)
|
|
|
558 |
submit_translate = gr.Button("Translate audio file", variant="primary")
|
559 |
text_translate = gr.Textbox(label="💬 Generated translation", lines=10)
|
560 |
+
status_translate = gr.Markdown()
|
561 |
|
562 |
with gr.Column():
|
563 |
with gr.Accordion("🤖 Ask audio file", open=True):
|
564 |
question_chat = gr.Textbox(label="Enter your question about audio file:", placeholder="Enter your question about audio file")
|
565 |
+
submit_chat = gr.Button("Ask audio file", variant="primary")
|
566 |
+
example_chat = [["What is the subject of this audio file?"], ["Quels sont les ingrédients ?"]]
|
567 |
+
gr.Examples(
|
568 |
+
examples=example_chat,
|
569 |
+
inputs=question_chat,
|
570 |
+
outputs=None,
|
571 |
+
fn=None,
|
572 |
+
cache_examples=False,
|
573 |
+
run_on_click=False
|
574 |
+
)
|
575 |
text_chat = gr.Textbox(label="💬 Model answer", lines=10)
|
576 |
+
status_chat = gr.Markdown()
|
577 |
|
578 |
### Processing
|
579 |
|
|
|
585 |
).then(
|
586 |
fn=process_transcript,
|
587 |
inputs=[sel_language, sel_audio],
|
588 |
+
outputs=[text_transcript, status_transcript]
|
589 |
).then(
|
590 |
enable_buttons,
|
591 |
outputs=[submit_transcript, submit_translate, submit_chat],
|
|
|
599 |
).then(
|
600 |
fn=process_translate,
|
601 |
inputs=[sel_translate_language, sel_audio],
|
602 |
+
outputs=[text_translate, status_translate]
|
603 |
).then(
|
604 |
enable_buttons,
|
605 |
outputs=[submit_transcript, submit_translate, submit_chat],
|
|
|
613 |
).then(
|
614 |
fn=process_chat,
|
615 |
inputs=[question_chat, sel_audio],
|
616 |
+
outputs=[text_chat, status_chat]
|
617 |
).then(
|
618 |
enable_buttons,
|
619 |
outputs=[submit_transcript, submit_translate, submit_chat],
|
|
|
622 |
### Launch the app
|
623 |
|
624 |
if __name__ == "__main__":
|
625 |
+
voxtral.queue().launch(debug=True)
|