Spaces:
Runtime error
Runtime error
| import os | |
| os.system("pip install git+https://github.com/shumingma/transformers.git") | |
| import threading | |
| import torch | |
| import torch._dynamo | |
| torch._dynamo.config.suppress_errors = True | |
| from transformers import ( | |
| AutoModelForCausalLM, | |
| AutoTokenizer, | |
| TextIteratorStreamer, | |
| ) | |
| import gradio as gr | |
| import spaces | |
| model_id = "microsoft/bitnet-b1.58-2B-4T" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto" | |
| ) | |
| print(model.device) | |
| def respond( | |
| message: str, | |
| history: list[tuple[str, str]], | |
| system_message: str, | |
| max_tokens: int, | |
| temperature: float, | |
| top_p: float, | |
| ): | |
| """ | |
| Generate a chat response using streaming with TextIteratorStreamer. | |
| Args: | |
| message: User's current message. | |
| history: List of (user, assistant) tuples from previous turns. | |
| system_message: Initial system prompt guiding the assistant. | |
| max_tokens: Maximum number of tokens to generate. | |
| temperature: Sampling temperature. | |
| top_p: Nucleus sampling probability. | |
| Yields: | |
| The growing response text as new tokens are generated. | |
| """ | |
| messages = [{"role": "system", "content": system_message}] | |
| for user_msg, bot_msg in history: | |
| if user_msg: | |
| messages.append({"role": "user", "content": user_msg}) | |
| if bot_msg: | |
| messages.append({"role": "assistant", "content": bot_msg}) | |
| messages.append({"role": "user", "content": message}) | |
| prompt = tokenizer.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| streamer = TextIteratorStreamer( | |
| tokenizer, skip_prompt=True, skip_special_tokens=True | |
| ) | |
| generate_kwargs = dict( | |
| **inputs, | |
| streamer=streamer, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| do_sample=True, | |
| ) | |
| thread = threading.Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| response = "" | |
| for new_text in streamer: | |
| response += new_text | |
| yield response | |
| demo = gr.ChatInterface( | |
| fn=respond, | |
| title="Bitnet-b1.58-2B-4T Chatbot", | |
| description="This chat application is powered by Microsoft's SOTA Bitnet-b1.58-2B-4T and designed for natural and fast conversations.", | |
| examples=[ | |
| [ | |
| "Hello! How are you?", | |
| "You are a helpful AI assistant for everyday tasks.", | |
| 512, | |
| 0.7, | |
| 0.95, | |
| ], | |
| [ | |
| "Can you code a snake game in Python?", | |
| "You are a helpful AI assistant for coding.", | |
| 2048, | |
| 0.7, | |
| 0.95, | |
| ], | |
| ], | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="You are a helpful AI assistant.", | |
| label="System message" | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=8192, | |
| value=2048, | |
| step=1, | |
| label="Max new tokens" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=4.0, | |
| value=0.7, | |
| step=0.1, | |
| label="Temperature" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)" | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |