Spaces:
Running
Running
Lorenzo Adacher
commited on
Upload 2 files
Browse files- gradio-interface.py +71 -0
- training-code.py +360 -0
gradio-interface.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
# Define the function to generate the sprite based on user input
|
4 |
+
def generate_sprite(character_description, num_frames, character_action, viewing_direction):
|
5 |
+
# Combine user inputs into a single prompt
|
6 |
+
prompt = f"Character description: {character_description}\n" \
|
7 |
+
f"Character action: {character_action}\n" \
|
8 |
+
f"Viewing direction: {viewing_direction}\n" \
|
9 |
+
f"Number of frames: {num_frames}"
|
10 |
+
|
11 |
+
# Load the model from Hugging Face Hub
|
12 |
+
model = gr.Interface.load("huggingface/Lod34/Animator2D-v2")
|
13 |
+
|
14 |
+
# Generate the sprite using the model
|
15 |
+
result = model(prompt)
|
16 |
+
|
17 |
+
return result
|
18 |
+
|
19 |
+
# Configure the Gradio interface
|
20 |
+
with gr.Blocks(title="Animated Sprite Generator") as demo:
|
21 |
+
gr.Markdown("# 🎮 AI Animated Sprite Generator")
|
22 |
+
gr.Markdown("""
|
23 |
+
This tool uses an AI model to generate animated sprites based on text descriptions.
|
24 |
+
Enter the character description, number of frames, character action, and viewing direction to generate your animated sprite.
|
25 |
+
""")
|
26 |
+
|
27 |
+
with gr.Row():
|
28 |
+
with gr.Column():
|
29 |
+
# Input components
|
30 |
+
char_desc = gr.Textbox(label="Character Description",
|
31 |
+
placeholder="Ex: a knight with golden armor and a fire sword",
|
32 |
+
lines=3)
|
33 |
+
num_frames = gr.Slider(minimum=1, maximum=8, step=1, value=4,
|
34 |
+
label="Number of Animation Frames")
|
35 |
+
char_action = gr.Dropdown(
|
36 |
+
choices=["idle", "walk", "run", "attack", "jump", "die", "cast spell", "dance"],
|
37 |
+
label="Character Action",
|
38 |
+
value="idle"
|
39 |
+
)
|
40 |
+
view_direction = gr.Dropdown(
|
41 |
+
choices=["front", "back", "left", "right", "front-left", "front-right", "back-left", "back-right"],
|
42 |
+
label="Viewing Direction",
|
43 |
+
value="front"
|
44 |
+
)
|
45 |
+
generate_btn = gr.Button("Generate Animated Sprite")
|
46 |
+
|
47 |
+
with gr.Column():
|
48 |
+
# Output component
|
49 |
+
animated_output = gr.Image(label="Animated Sprite (GIF)")
|
50 |
+
|
51 |
+
# Connect the button to the function
|
52 |
+
generate_btn.click(
|
53 |
+
fn=generate_sprite,
|
54 |
+
inputs=[char_desc, num_frames, char_action, view_direction],
|
55 |
+
outputs=animated_output
|
56 |
+
)
|
57 |
+
|
58 |
+
# Predefined examples
|
59 |
+
gr.Examples(
|
60 |
+
[
|
61 |
+
["A wizard with blue cloak and pointed hat", 4, "cast spell", "front"],
|
62 |
+
["A warrior with heavy armor and axe", 6, "attack", "right"],
|
63 |
+
["A ninja with black clothes and throwing stars", 8, "run", "front-left"],
|
64 |
+
["A princess with golden crown and pink dress", 4, "dance", "front"]
|
65 |
+
],
|
66 |
+
inputs=[char_desc, num_frames, char_action, view_direction]
|
67 |
+
)
|
68 |
+
|
69 |
+
# Launch the Gradio interface
|
70 |
+
if __name__ == "__main__":
|
71 |
+
demo.launch(share=True)
|
training-code.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.optim as optim
|
5 |
+
from torch.utils.data import DataLoader, Dataset, random_split
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
+
from datasets import load_dataset
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
from torchvision import transforms
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from tqdm import tqdm
|
13 |
+
import io
|
14 |
+
|
15 |
+
# Definiamo un percorso per salvare il modello addestrato
|
16 |
+
MODEL_PATH = "sprite_generator_model"
|
17 |
+
os.makedirs(MODEL_PATH, exist_ok=True)
|
18 |
+
|
19 |
+
# Carichiamo il dataset da Hugging Face
|
20 |
+
print("Caricamento del dataset...")
|
21 |
+
dataset = load_dataset("pawkanarek/spraix_1024")
|
22 |
+
print(f"Dataset caricato. Dimensioni: {len(dataset['train'])} esempi di training")
|
23 |
+
|
24 |
+
# Verifichiamo gli split disponibili
|
25 |
+
print("Split disponibili nel dataset:")
|
26 |
+
print(dataset.keys())
|
27 |
+
|
28 |
+
# Stampiamo un esempio per capire la struttura del dataset
|
29 |
+
print("Esempio di dato dal dataset:")
|
30 |
+
example = dataset['train'][0]
|
31 |
+
print("Chiavi disponibili:", example.keys())
|
32 |
+
for key in example:
|
33 |
+
print(f"{key}: {type(example[key])}")
|
34 |
+
# Se il valore è un dizionario, stampiamo anche le sue chiavi
|
35 |
+
if isinstance(example[key], dict):
|
36 |
+
print(f" Sottochavi: {example[key].keys()}")
|
37 |
+
|
38 |
+
# Classe per il nostro dataset personalizzato
|
39 |
+
class SpriteDataset(Dataset):
|
40 |
+
def __init__(self, dataset_to_use, max_length=128):
|
41 |
+
self.dataset = dataset_to_use
|
42 |
+
self.tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
43 |
+
self.max_length = max_length
|
44 |
+
self.transform = transforms.Compose([
|
45 |
+
transforms.Resize((256, 256)),
|
46 |
+
transforms.ToTensor(),
|
47 |
+
transforms.ConvertImageDtype(torch.float), # Converti in float32
|
48 |
+
transforms.Lambda(lambda image: image[:3, :, :]), # Seleziona solo i primi 3 canali (RGB)
|
49 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
50 |
+
])
|
51 |
+
|
52 |
+
def __len__(self):
|
53 |
+
return len(self.dataset)
|
54 |
+
|
55 |
+
def __getitem__(self, idx):
|
56 |
+
item = self.dataset[idx]
|
57 |
+
|
58 |
+
# Estrai informazioni dalla descrizione completa
|
59 |
+
description = item['text'] if 'text' in item else ""
|
60 |
+
|
61 |
+
# Estrai numero di frame dal testo
|
62 |
+
num_frames = 1 # valore di default
|
63 |
+
if "frame" in description:
|
64 |
+
# Cerca numeri seguiti da "frame" nel testo
|
65 |
+
import re
|
66 |
+
frames_match = re.search(r'(\d+)-frame', description)
|
67 |
+
if frames_match:
|
68 |
+
num_frames = int(frames_match.group(1))
|
69 |
+
|
70 |
+
# Prepara il testo per il modello
|
71 |
+
text_input = f"""
|
72 |
+
Description: {description}
|
73 |
+
Number of frames: {num_frames}
|
74 |
+
"""
|
75 |
+
|
76 |
+
# Tokenizziamo l'input testuale
|
77 |
+
encoded_text = self.tokenizer(
|
78 |
+
text_input,
|
79 |
+
padding="max_length",
|
80 |
+
max_length=self.max_length,
|
81 |
+
truncation=True,
|
82 |
+
return_tensors="pt"
|
83 |
+
)
|
84 |
+
|
85 |
+
# Prepariamo l'immagine (o le immagini se ci sono frame multipli)
|
86 |
+
sprite_frames = []
|
87 |
+
|
88 |
+
# Controlla le chiavi disponibili per i frame
|
89 |
+
if 'image' in item:
|
90 |
+
# Se c'è un'unica immagine
|
91 |
+
img = item['image']
|
92 |
+
if isinstance(img, dict) and 'bytes' in img:
|
93 |
+
img_pil = Image.open(io.BytesIO(img['bytes']))
|
94 |
+
sprite_frames.append(self.transform(img_pil))
|
95 |
+
elif hasattr(img, 'convert'): # Se è già un'immagine PIL
|
96 |
+
sprite_frames.append(self.transform(img))
|
97 |
+
else:
|
98 |
+
# Prova a cercare frame_0, frame_1, ecc.
|
99 |
+
for frame in range(num_frames):
|
100 |
+
frame_key = f'frame_{frame}'
|
101 |
+
if frame_key in item:
|
102 |
+
img = item[frame_key]
|
103 |
+
if isinstance(img, dict) and 'bytes' in img:
|
104 |
+
img_pil = Image.open(io.BytesIO(img['bytes']))
|
105 |
+
sprite_frames.append(self.transform(img_pil))
|
106 |
+
elif hasattr(img, 'convert'): # Se è già un'immagine PIL
|
107 |
+
sprite_frames.append(self.transform(img))
|
108 |
+
|
109 |
+
# Se non abbiamo trovato immagini, prova a cercare altre chiavi comuni
|
110 |
+
if not sprite_frames:
|
111 |
+
possible_image_keys = ['image', 'img', 'sprite', 'frames']
|
112 |
+
for key in possible_image_keys:
|
113 |
+
if key in item and item[key] is not None:
|
114 |
+
img = item[key]
|
115 |
+
if isinstance(img, dict) and 'bytes' in img:
|
116 |
+
img_pil = Image.open(io.BytesIO(img['bytes']))
|
117 |
+
sprite_frames.append(self.transform(img_pil))
|
118 |
+
elif hasattr(img, 'convert'): # Se è già un'immagine PIL
|
119 |
+
sprite_frames.append(self.transform(img))
|
120 |
+
break
|
121 |
+
|
122 |
+
# Se ancora non abbiamo frame, crea un tensore vuoto
|
123 |
+
if not sprite_frames:
|
124 |
+
sprite_frames.append(torch.zeros((3, 256, 256)))
|
125 |
+
|
126 |
+
# Combiniamo tutti i frame in un unico tensore
|
127 |
+
sprite_tensor = torch.stack(sprite_frames)
|
128 |
+
|
129 |
+
return {
|
130 |
+
"input_ids": encoded_text.input_ids.squeeze(),
|
131 |
+
"attention_mask": encoded_text.attention_mask.squeeze(),
|
132 |
+
"sprite_frames": sprite_tensor,
|
133 |
+
"num_frames": torch.tensor(num_frames, dtype=torch.int64)
|
134 |
+
}
|
135 |
+
|
136 |
+
# Modello generatore di sprite
|
137 |
+
class SpriteGenerator(nn.Module):
|
138 |
+
def __init__(self, text_encoder_name="t5-base", latent_dim=512):
|
139 |
+
super(SpriteGenerator, self).__init__()
|
140 |
+
|
141 |
+
# Encoder testuale
|
142 |
+
self.text_encoder = AutoModelForSeq2SeqLM.from_pretrained(text_encoder_name)
|
143 |
+
# Freeziamo i parametri dell'encoder per iniziare
|
144 |
+
for param in self.text_encoder.parameters():
|
145 |
+
param.requires_grad = False
|
146 |
+
|
147 |
+
# Proiezione dal testo al latent space
|
148 |
+
self.text_projection = nn.Sequential(
|
149 |
+
nn.Linear(self.text_encoder.config.d_model, latent_dim),
|
150 |
+
nn.LeakyReLU(0.2),
|
151 |
+
nn.Linear(latent_dim, latent_dim)
|
152 |
+
)
|
153 |
+
|
154 |
+
# Frame generator (una rete deconvoluzionale)
|
155 |
+
self.generator = nn.Sequential(
|
156 |
+
# Input: latent_dim x 1 x 1
|
157 |
+
nn.ConvTranspose2d(latent_dim, 512, 4, 1, 0, bias=False), # -> 512 x 4 x 4
|
158 |
+
nn.BatchNorm2d(512),
|
159 |
+
nn.ReLU(True),
|
160 |
+
|
161 |
+
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False), # -> 256 x 8 x 8
|
162 |
+
nn.BatchNorm2d(256),
|
163 |
+
nn.ReLU(True),
|
164 |
+
|
165 |
+
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False), # -> 128 x 16 x 16
|
166 |
+
nn.BatchNorm2d(128),
|
167 |
+
nn.ReLU(True),
|
168 |
+
|
169 |
+
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False), # -> 64 x 32 x 32
|
170 |
+
nn.BatchNorm2d(64),
|
171 |
+
nn.ReLU(True),
|
172 |
+
|
173 |
+
nn.ConvTranspose2d(64, 32, 4, 2, 1, bias=False), # -> 32 x 64 x 64
|
174 |
+
nn.BatchNorm2d(32),
|
175 |
+
nn.ReLU(True),
|
176 |
+
|
177 |
+
nn.ConvTranspose2d(32, 16, 4, 2, 1, bias=False), # -> 16 x 128 x 128
|
178 |
+
nn.BatchNorm2d(16),
|
179 |
+
nn.ReLU(True),
|
180 |
+
|
181 |
+
nn.ConvTranspose2d(16, 3, 4, 2, 1, bias=False), # -> 3 x 256 x 256
|
182 |
+
nn.Tanh()
|
183 |
+
)
|
184 |
+
|
185 |
+
# Frame interpolator per supportare animazioni con più frame
|
186 |
+
self.frame_interpolator = nn.Sequential(
|
187 |
+
nn.Linear(latent_dim + 1, latent_dim), # +1 per l'informazione sul frame
|
188 |
+
nn.LeakyReLU(0.2),
|
189 |
+
nn.Linear(latent_dim, latent_dim),
|
190 |
+
nn.LeakyReLU(0.2)
|
191 |
+
)
|
192 |
+
|
193 |
+
def forward(self, input_ids, attention_mask, num_frames=1):
|
194 |
+
batch_size = input_ids.shape[0]
|
195 |
+
|
196 |
+
# Codifichiamo il testo
|
197 |
+
text_outputs = self.text_encoder.encoder(
|
198 |
+
input_ids=input_ids,
|
199 |
+
attention_mask=attention_mask,
|
200 |
+
return_dict=True
|
201 |
+
)
|
202 |
+
|
203 |
+
# Utilizziamo l'ultimo hidden state
|
204 |
+
text_features = text_outputs.last_hidden_state.mean(dim=1) # Media per ottenere un vettore per esempio
|
205 |
+
|
206 |
+
# Proiettiamo nello spazio latente
|
207 |
+
latent_vector = self.text_projection(text_features)
|
208 |
+
|
209 |
+
# Generiamo frame multipli se necessario
|
210 |
+
all_frames = []
|
211 |
+
for frame_idx in range(max(num_frames.max().item(), 1)):
|
212 |
+
# Normalizziamo l'indice del frame
|
213 |
+
frame_info = torch.ones((batch_size, 1), device=latent_vector.device) * frame_idx / max(num_frames.max().item(), 1)
|
214 |
+
|
215 |
+
# Combiniamo il vettore latente con l'informazione sul frame
|
216 |
+
frame_latent = self.frame_interpolator(
|
217 |
+
torch.cat([latent_vector, frame_info], dim=1)
|
218 |
+
)
|
219 |
+
|
220 |
+
# Ricordiamo quanti frame generare per ogni esempio del batch
|
221 |
+
frame_mask = (frame_idx < num_frames).float().unsqueeze(1)
|
222 |
+
|
223 |
+
# Riformattiamo per il generatore
|
224 |
+
frame_latent_reshaped = frame_latent.unsqueeze(2).unsqueeze(3) # [B, latent_dim, 1, 1]
|
225 |
+
|
226 |
+
# Generiamo il frame
|
227 |
+
frame = self.generator(frame_latent_reshaped) * frame_mask.unsqueeze(2).unsqueeze(3)
|
228 |
+
all_frames.append(frame)
|
229 |
+
|
230 |
+
# Combiniamo tutti i frame
|
231 |
+
sprites = torch.stack(all_frames, dim=1) # [B, num_frames, 3, 256, 256]
|
232 |
+
|
233 |
+
return sprites
|
234 |
+
|
235 |
+
# Funzione per addestrare il modello
|
236 |
+
def train_model(model, train_loader, val_loader, epochs=10, lr=0.0002):
|
237 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
238 |
+
print(f"Utilizzo del dispositivo: {device}")
|
239 |
+
|
240 |
+
model = model.to(device)
|
241 |
+
|
242 |
+
optimizer = optim.Adam(model.parameters(), lr=lr, betas=(0.5, 0.999))
|
243 |
+
criterion = nn.MSELoss()
|
244 |
+
|
245 |
+
best_val_loss = float('inf')
|
246 |
+
|
247 |
+
for epoch in range(epochs):
|
248 |
+
# Training
|
249 |
+
model.train()
|
250 |
+
train_loss = 0.0
|
251 |
+
|
252 |
+
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs} - Training"):
|
253 |
+
input_ids = batch["input_ids"].to(device)
|
254 |
+
attention_mask = batch["attention_mask"].to(device)
|
255 |
+
target_sprites = batch["sprite_frames"].to(device)
|
256 |
+
num_frames = batch["num_frames"].to(device)
|
257 |
+
|
258 |
+
optimizer.zero_grad()
|
259 |
+
|
260 |
+
# Forward pass
|
261 |
+
output_sprites = model(input_ids, attention_mask, num_frames)
|
262 |
+
|
263 |
+
# Calcoliamo la loss per il batch
|
264 |
+
loss = 0.0
|
265 |
+
for i in range(len(num_frames)):
|
266 |
+
# Utilizziamo solo i frame validi per ogni esempio
|
267 |
+
valid_frames = min(output_sprites.shape[1], target_sprites.shape[1], num_frames[i].item())
|
268 |
+
if valid_frames > 0:
|
269 |
+
loss += criterion(
|
270 |
+
output_sprites[i, :valid_frames],
|
271 |
+
target_sprites[i, :valid_frames]
|
272 |
+
)
|
273 |
+
|
274 |
+
loss = loss / len(num_frames) # Media per batch
|
275 |
+
|
276 |
+
# Backward pass
|
277 |
+
loss.backward()
|
278 |
+
optimizer.step()
|
279 |
+
|
280 |
+
train_loss += loss.item()
|
281 |
+
|
282 |
+
train_loss /= len(train_loader)
|
283 |
+
|
284 |
+
# Validation
|
285 |
+
model.eval()
|
286 |
+
val_loss = 0.0
|
287 |
+
|
288 |
+
with torch.no_grad():
|
289 |
+
for batch in tqdm(val_loader, desc=f"Epoch {epoch+1}/{epochs} - Validation"):
|
290 |
+
input_ids = batch["input_ids"].to(device)
|
291 |
+
attention_mask = batch["attention_mask"].to(device)
|
292 |
+
target_sprites = batch["sprite_frames"].to(device)
|
293 |
+
num_frames = batch["num_frames"].to(device)
|
294 |
+
|
295 |
+
output_sprites = model(input_ids, attention_mask, num_frames)
|
296 |
+
|
297 |
+
# Calcoliamo la loss per il batch di validazione
|
298 |
+
loss = 0.0
|
299 |
+
for i in range(len(num_frames)):
|
300 |
+
valid_frames = min(output_sprites.shape[1], target_sprites.shape[1], num_frames[i].item())
|
301 |
+
if valid_frames > 0:
|
302 |
+
loss += criterion(
|
303 |
+
output_sprites[i, :valid_frames],
|
304 |
+
target_sprites[i, :valid_frames]
|
305 |
+
)
|
306 |
+
|
307 |
+
loss = loss / len(num_frames)
|
308 |
+
val_loss += loss.item()
|
309 |
+
|
310 |
+
val_loss /= len(val_loader)
|
311 |
+
|
312 |
+
print(f"Epoch {epoch+1}/{epochs} - Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
|
313 |
+
|
314 |
+
# Salviamo il modello migliore
|
315 |
+
if val_loss < best_val_loss:
|
316 |
+
best_val_loss = val_loss
|
317 |
+
torch.save(model.state_dict(), os.path.join(MODEL_PATH, "best_model.pth"))
|
318 |
+
print(f"Modello salvato con Val Loss: {val_loss:.4f}")
|
319 |
+
|
320 |
+
# Salviamo il modello finale
|
321 |
+
torch.save(model.state_dict(), os.path.join(MODEL_PATH, "Animator2D-v2.pth"))
|
322 |
+
print(f"Addestramento completato. Modello finale salvato.")
|
323 |
+
|
324 |
+
return model
|
325 |
+
|
326 |
+
# Codice per l'esecuzione dell'addestramento
|
327 |
+
if __name__ == "__main__":
|
328 |
+
# Dividiamo il dataset in train e validation manualmente
|
329 |
+
# dato che abbiamo solo lo split "train"
|
330 |
+
train_size = int(0.8 * len(dataset['train'])) # 80% per training
|
331 |
+
val_size = len(dataset['train']) - train_size # 20% per validation
|
332 |
+
|
333 |
+
print(f"Dividendo il dataset: {train_size} esempi per training, {val_size} esempi per validation")
|
334 |
+
|
335 |
+
# Creiamo i subset
|
336 |
+
train_subset, val_subset = random_split(
|
337 |
+
dataset['train'],
|
338 |
+
[train_size, val_size]
|
339 |
+
)
|
340 |
+
|
341 |
+
# Creiamo i dataset personalizzati
|
342 |
+
train_dataset = SpriteDataset(train_subset)
|
343 |
+
val_dataset = SpriteDataset(val_subset)
|
344 |
+
|
345 |
+
print(f"Dataset creati: {len(train_dataset)} esempi di training, {len(val_dataset)} esempi di validation")
|
346 |
+
|
347 |
+
# Creiamo i dataloader
|
348 |
+
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=4)
|
349 |
+
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False, num_workers=4)
|
350 |
+
|
351 |
+
# Creiamo e addestriamo il modello
|
352 |
+
model = SpriteGenerator()
|
353 |
+
trained_model = train_model(
|
354 |
+
model,
|
355 |
+
train_loader,
|
356 |
+
val_loader,
|
357 |
+
epochs=20
|
358 |
+
)
|
359 |
+
|
360 |
+
print("Modello addestrato con successo!")
|