File size: 4,248 Bytes
27ca478
 
9d1f88c
d5c2fca
 
 
f59d33b
 
9d1f88c
 
 
 
 
 
 
53fa185
9d1f88c
 
 
 
 
 
 
 
53fa185
9d1f88c
470cc6a
9d1f88c
 
 
 
 
 
5ff12ca
9d1f88c
 
470cc6a
9d1f88c
 
 
a80921c
 
6459d49
4c81392
a80921c
6c08e5a
a80921c
 
 
 
9d1f88c
5ff12ca
9d1f88c
 
 
5ff12ca
9d1f88c
 
5ff12ca
9d1f88c
 
5ff12ca
9d1f88c
 
 
6459d49
 
9d1f88c
193b61b
 
 
 
 
 
 
 
 
 
 
 
5ff12ca
9d1f88c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193b61b
 
 
9d1f88c
 
 
 
 
 
 
 
 
193b61b
 
 
9d1f88c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr

# Importing necessary components for the Gradio app
from app.description import DESCRIPTION_STATIC, DESCRIPTION_DYNAMIC
from app.authors import AUTHORS
from app.app_utils import preprocess_image_and_predict, preprocess_video_and_predict


def clear_static_info():
    return (
        gr.Image(value=None, type="pil"),
        gr.Image(value=None, scale=1, elem_classes="dl5"),
        gr.Image(value=None, scale=1, elem_classes="dl2"),
        gr.Label(value=None, num_top_classes=3, scale=1, elem_classes="dl3"),
    )

def clear_dynamic_info():
    return (
        gr.Video(value=None),
        gr.Video(value=None),
        gr.Video(value=None),
        gr.Video(value=None),
        gr.Plot(value=None),
    )

with gr.Blocks(css="app.css") as demo:
    with gr.Tab("εŠ¨ζ€θ§†ι’‘εˆ†ζž"):
        gr.Markdown(value=DESCRIPTION_DYNAMIC)
        with gr.Row():
            with gr.Column(scale=2):
                input_video = gr.Video(elem_classes="video1")
                with gr.Row():
                    clear_btn_dynamic = gr.Button(
                        value="清陀", interactive=True, scale=1
                    )
                    submit_dynamic = gr.Button(
                        value="提亀", interactive=True, scale=1, elem_classes="提亀"
                    )
            with gr.Column(scale=2, elem_classes="dl4"):
                with gr.Row():
                    output_video = gr.Video(label="Original video", scale=1, elem_classes="video2")
                    output_face = gr.Video(label="Pre-processed video", scale=1, elem_classes="video3")
                    output_heatmaps = gr.Video(label="ηƒ­ε›Ύ", scale=1, elem_classes="video4")
                output_statistics = gr.Plot(label="statistics of emotions", elem_classes="stat")
        gr.Examples(
            [#"videos/video1.mp4",
            "videos/video2.mp4",
            ],
            [input_video],
       )

    with gr.Tab("ι™ζ€ε›Ύη‰‡εˆ†ζž"):
        gr.Markdown(value=DESCRIPTION_STATIC)
        with gr.Row():
            with gr.Column(scale=2, elem_classes="dl1"):
                input_image = gr.Image(label="ιœ€θ¦εˆ†ζžηš„ε›Ύη‰‡", type="pil")
                with gr.Row():
                    clear_btn = gr.Button(
                        value="清陀", interactive=True, scale=1, elem_classes="clear"
                    )
                    submit = gr.Button(
                        value="提亀", interactive=True, scale=1, elem_classes="submit"
                    )
            with gr.Column(scale=1, elem_classes="dl4"):
                with gr.Row():
                    output_image = gr.Image(label="脸部", scale=1, elem_classes="dl5")
                    output_heatmap = gr.Image(label="ηƒ­ε›Ύ", scale=1, elem_classes="dl2")
                output_label = gr.Label(num_top_classes=3, scale=1, elem_classes="dl3")
        #gr.Examples(
          #  [
                #"images/fig7.jpg",
                #"images/fig1.jpg",
                #"images/fig2.jpg",
                #"images/fig3.jpg",
               # "images/fig4.jpg",
              #  "images/fig5.jpg",
             #   "images/fig6.jpg",
         #   ],
          #  [input_image],
       # )
    with gr.Tab("δ½œθ€…"):
        gr.Markdown(value=AUTHORS)

    submit.click(
        fn=preprocess_image_and_predict,
        inputs=[input_image],
        outputs=[output_image, output_heatmap, output_label],
        queue=True,
    )
    clear_btn.click(
        fn=clear_static_info,
        inputs=[],
        outputs=[input_image, output_image, output_heatmap, output_label],
        queue=True,
    )

    submit_dynamic.click(
        fn=preprocess_video_and_predict,
        inputs=input_video,
        outputs=[
  #          output_video,
 #           output_face,
#            output_heatmaps, 
            output_statistics
        ],
        queue=True,
    )
    clear_btn_dynamic.click(
        fn=clear_dynamic_info,
        inputs=[],
        outputs=[
            input_video,
  #          output_video,
   #         output_face,
    #        output_heatmaps, 
            output_statistics
        ],
        queue=True,
    )

if __name__ == "__main__":
    demo.queue(api_open=False).launch(share=False)