Spaces:
Runtime error
Runtime error
File size: 38,497 Bytes
69a6cef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 |
import glob
import json
import logging
import math
import os.path
import re
import textwrap
import uuid
from typing import Optional, Tuple, List, Union
import blurhash
import numpy as np
from PIL import Image
from gchar.games.base import Character
from gchar.games.dispatch.access import GAME_CHARS
from gchar.generic import import_generic
from hbutils.string import plural_word
from hbutils.system import TemporaryDirectory
from huggingface_hub import hf_hub_url
from imgutils.data import load_image
from imgutils.detect import detect_faces
from imgutils.metrics import ccip_extract_feature, ccip_batch_same
from imgutils.validate import anime_rating_score, nsfw_pred
from pycivitai import civitai_find_online
from pycivitai.client import ModelNotFound
from tqdm.auto import tqdm
from urlobject import URLObject
from waifuc.source import LocalSource
try:
from typing import Literal
except (ModuleNotFoundError, ImportError):
from typing_extensions import Literal
import markdown2
from ..dataset import load_dataset_for_character
from ..utils import get_civitai_session, srequest, get_ch_name, get_hf_fs, download_file, parse_time, \
load_tags_from_directory, repr_tags
import_generic()
def _norm(x, keep_space: bool = True):
return re.sub(r'[\W_]+', ' ' if keep_space else '', x.lower()).strip()
def _model_tag_same(x, y):
return _norm(x, keep_space=True) == _norm(y, keep_space=True)
def civitai_query_model_tags(tag: str, session=None) -> Tuple[Optional[int], str]:
session = session or get_civitai_session()
logging.info(f'Querying tag {tag!r} from civitai ...')
resp = srequest(session, 'GET', 'https://civitai.com/api/trpc/tag.getAll', params={
'input': json.dumps({
"json": {
"limit": 20,
"entityType": ["Model"],
"categories": False,
"query": tag,
"authed": True,
}
})
}, headers={'Referer': 'https://civitai.com/models/create'})
data = resp.json()['result']['data']['json']['items']
for item in data:
if _model_tag_same(item['name'], tag):
logging.info(f'Tag {item["name"]}({item["id"]}) found on civitai.')
return item['id'], item['name']
else:
logging.info(f'Tag not found on civitai, new tag {_norm(tag)!r} will be created.')
return None, _norm(tag)
CommercialUseTyping = Literal['none', 'image', 'rentCivit', 'rent', 'sell']
def civitai_upsert_model(
name, description_md: str, tags: List[str],
commercial_use: CommercialUseTyping = 'rent',
allow_no_credit: bool = True, allow_derivatives: bool = True, allow_different_licence: bool = True,
nsfw: bool = False, poi: bool = False, exist_model_id: Optional[int] = None,
session=None
) -> Tuple[int, bool]:
session = session or get_civitai_session()
_exist_tags, tag_list, _tag_id = set(), [], 0
_meta_values = {}
for tag in tags:
tag_id, tag_name = civitai_query_model_tags(tag, session)
if tag_name not in _exist_tags:
tag_list.append({'id': tag_id, 'name': tag_name})
_meta_values[f"tagsOnModels.{_tag_id}.id"] = ["undefined"]
_tag_id += 1
post_json = {
"name": name,
"description": markdown2.markdown(textwrap.dedent(description_md)),
"type": "LORA",
"allowCommercialUse": commercial_use.lower().capitalize(), # None, Image, Rent, Sell
"allowNoCredit": allow_no_credit,
"allowDerivatives": allow_derivatives,
"allowDifferentLicense": allow_different_licence,
"nsfw": nsfw,
"poi": poi,
"tagsOnModels": tag_list,
"authed": True,
"status": "Draft",
"checkpointType": None,
"uploadType": "Created",
}
if exist_model_id:
post_json['id'] = exist_model_id
post_json["locked"] = False
post_json["status"] = "Published"
logging.info(f'Model {name!r}({exist_model_id}) already exist, updating its new information. '
f'Tags: {[item["name"] for item in tag_list]!r} ...')
else:
logging.info(f'Creating model {name!r}, tags: {[item["name"] for item in tag_list]!r} ...')
resp = session.post(
'https://civitai.com/api/trpc/model.upsert',
json={
"json": post_json,
"meta": {
"values": _meta_values,
}
},
headers={'Referer': 'https://civitai.com/models/create'},
)
data = resp.json()['result']['data']['json']
return data['id'], data['nsfw']
def civitai_query_vae_models(session=None, model_id=None):
session = session or get_civitai_session()
logging.info('Querying VAE models ...')
resp = srequest(
session, 'GET', ' https://civitai.com/api/trpc/modelVersion.getModelVersionsByModelType',
params={'input': json.dumps({"json": {"type": "VAE", "authed": True}})},
headers={'Referer': f'https://civitai.com/models/{model_id or 0}/wizard?step=2'}
)
data = resp.json()['result']['data']['json']
logging.info(f'{plural_word(len(data), "VAE model")} found.')
return data
def _vae_model_same(x, y):
return _norm(x, keep_space=False) == _norm(y, keep_space=False)
def civitai_create_version(
model_id: int, version_name: str, description_md: str, trigger_words: List[str],
base_model: str = 'SD 1.5', steps: Optional[int] = None, epochs: Optional[int] = None,
clip_skip: Optional[int] = 2, vae_name: Optional[str] = None, early_access_time: int = 0,
session=None
):
session = session or get_civitai_session()
vae_id = None
if vae_name:
for vae_item in civitai_query_vae_models(session, model_id):
if _vae_model_same(vae_item['modelName'], vae_name):
vae_id = vae_item['id']
logging.info(f'Creating version {version_name!r} for model {model_id}, with base model {base_model!r} ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/modelVersion.upsert',
json={
"json": {
"modelId": model_id,
"name": version_name,
"baseModel": base_model,
"description": markdown2.markdown(textwrap.dedent(description_md)),
"steps": steps,
"epochs": epochs,
"clipSkip": clip_skip,
"vaeId": vae_id,
"trainedWords": trigger_words,
"earlyAccessTimeFrame": early_access_time,
"skipTrainedWords": bool(not trigger_words),
"authed": True,
}
},
headers={'Referer': f'https://civitai.com/models/{model_id}/wizard?step=2'}
)
return resp.json()['result']['data']['json']
def civitai_upload_file(local_file: str, type_: str = 'model', filename: str = None,
model_id: int = None, session=None):
session = session or get_civitai_session()
filename = filename or os.path.basename(local_file)
logging.info(f'Creating uploading request for {filename!r} ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/upload',
json={
"filename": filename,
"type": type_,
"size": os.path.getsize(local_file),
},
headers={'Referer': f'https://civitai.com/models/{model_id or 0}/wizard?step=3'}
)
upload_data = resp.json()
logging.info(f'Uploading file {local_file!r} as {filename!r} ...')
with open(local_file, 'rb') as f:
resp = srequest(
session, 'PUT', upload_data['urls'][0]['url'], data=f,
headers={'Referer': f'https://civitai.com/models/{model_id or 0}/wizard?step=3'},
)
etag = resp.headers['ETag']
logging.info(f'Completing uploading for {filename!r} ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/upload/complete',
json={
"bucket": upload_data['bucket'],
"key": upload_data['key'],
"type": type_,
"uploadId": upload_data['uploadId'],
"parts": [{"ETag": etag, "PartNumber": 1}],
},
headers={'Referer': f'https://civitai.com/models/{model_id or 0}/wizard?step=3'},
)
resp.raise_for_status()
return {
"url": str(URLObject(upload_data['urls'][0]['url']).without_query()),
"bucket": upload_data['bucket'],
"key": upload_data['key'],
"name": filename,
"uuid": str(uuid.uuid4()),
"sizeKB": os.path.getsize(local_file) / 1024.0,
}
def civitai_upload_models(model_version_id: int, model_files: List[Union[str, Tuple[str, str]]],
model_id: int = None, session=None):
session = session or get_civitai_session()
file_items = []
for file_item in model_files:
if isinstance(file_item, str):
local_file, filename = file_item, file_item
elif isinstance(file_item, tuple):
local_file, filename = file_item
else:
raise TypeError(f'Unknown file type - {file_item!r}.')
file_items.append((local_file, filename))
for local_file, filename in file_items:
upload_data = civitai_upload_file(local_file, 'model', filename, model_id, session)
logging.info(f'Creating {filename!r} as model file of version {model_version_id} ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/modelFile.create',
json={
'json': {
**upload_data,
"modelVersionId": model_version_id,
"type": "Model",
"metadata": {
"size": None,
"fp": None
},
"authed": True
},
},
headers={'Referer': f'https://civitai.com/models/{model_id or 0}/wizard?step=3'},
)
resp.raise_for_status()
def civitai_get_model_info(model_id: int, session=None):
session = session or get_civitai_session()
resp = srequest(
session, 'GET', 'https://civitai.com/api/trpc/model.getById',
params={'input': json.dumps({"json": {"id": model_id, "authed": True}})},
headers={'Referer': f'https://civitai.com/models/{model_id}/wizard?step=4'},
)
return resp.json()['result']['data']['json']
def get_clamped_size(width, height, max_val, _type='all'):
if _type == 'all':
if width >= height:
_type = 'width'
elif height >= width:
_type = 'height'
if _type == 'width' and width > max_val:
return max_val, int(round((height / width) * max_val))
if _type == 'height' and height > max_val:
return int(round((width / height) * max_val)), max_val
return width, height
def parse_publish_at(publish_at: Optional[str] = None, keep_none: bool = True) -> Optional[str]:
try:
from zoneinfo import ZoneInfo
except (ImportError, ModuleNotFoundError):
from backports.zoneinfo import ZoneInfo
if not keep_none and publish_at is None:
publish_at = 'now'
if publish_at is not None:
local_time = parse_time(publish_at)
publish_at = local_time.astimezone(ZoneInfo('UTC')).isoformat()
return publish_at
def _post_create_func(model_version_id):
return {
"json": {
"modelVersionId": model_version_id,
"authed": True,
}
}
def civitai_upload_images(
model_version_id: int, image_files: List[Union[str, Tuple[str, str], Tuple[str, str, dict]]],
tags: List[str], nsfw: bool = False, model_id: int = None, pc_func=_post_create_func, session=None
):
session = session or get_civitai_session()
image_items = []
for image_item in image_files:
if isinstance(image_item, str):
local_file, filename, meta = image_item, image_item, {}
elif isinstance(image_item, tuple):
if len(image_item) == 2:
(local_file, filename), meta = image_item, {}
elif len(image_item) == 3:
local_file, filename, meta = image_item
else:
raise ValueError(f'Invalid image file format - {image_item!r}.')
else:
raise TypeError(f'Invalid image file type - {image_item!r}.')
image_items.append((local_file, filename, meta))
logging.info(f'Creating post for model version {model_version_id} ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/post.create',
json=pc_func(model_version_id),
headers={'Referer': f'https://civitai.com/models/{model_id or 0}/wizard?step=4'},
)
post_id = resp.json()['result']['data']['json']['id']
for index, (local_file, filename, meta) in enumerate(image_items):
logging.info(f'Creating image uploading request for image {filename!r} ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/image-upload',
json={
"filename": filename,
"metadata": {}
},
headers={'Referer': f'https://civitai.com/models/{model_id or 0}/wizard?step=4'},
)
upload_id = resp.json()['id']
upload_url = resp.json()['uploadURL']
logging.info(f'Uploading local image {local_file!r} as image {filename!r} ...')
with open(local_file, 'rb') as f:
resp = srequest(session, 'PUT', upload_url, data=f)
resp.raise_for_status()
img = load_image(local_file, force_background='white', mode='RGB')
new_width, new_height = get_clamped_size(img.width, img.height, 32)
bhash = blurhash.encode(np.array(img.resize((new_width, new_height))))
logging.info(f'Completing the uploading of {filename!r} ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/post.addImage',
json={
"json": {
"type": "image",
"index": index,
"uuid": str(uuid.uuid4()),
"name": filename,
"meta": meta,
"url": upload_id,
"mimeType": "image/png",
"hash": bhash,
"width": img.width,
"height": img.height,
"status": "uploading",
"message": None,
"postId": post_id,
"modelVersionId": model_version_id,
"authed": True
},
"meta": {
"values": {
"message": [
"undefined"
]
}
}
},
headers={'Referer': f'https://civitai.com/models/{model_id or 0}/wizard?step=4'},
)
resp.raise_for_status()
for tag in tags:
tag_id, tag_name = civitai_query_model_tags(tag, session)
if tag_id is not None:
logging.info(f'Adding tag {tag_name!r}({tag_id}) for post {post_id!r} ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/post.addTag',
json={
"json": {
"id": post_id,
"tagId": tag_id,
"name": tag_name,
"authed": True,
}
},
headers={'Referer': f'https://civitai.com/models/{model_id or 0}/wizard?step=4'},
)
else:
logging.info(f'Creating and adding new tag {tag_name!r} for post {post_id!r} ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/post.addTag',
json={
"json": {
"id": post_id,
"tagId": None,
"name": tag_name,
"authed": True,
},
"meta": {
"values": {
"tagId": ["undefined"]
}
}
},
headers={'Referer': f'https://civitai.com/models/{model_id or 0}/wizard?step=4'},
)
resp.raise_for_status()
logging.info(f'Marking for nsfw ({nsfw!r}) ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/post.update',
json={
'json': {
'id': post_id,
'nsfw': nsfw,
'authed': True,
}
},
headers={'Referer': f'https://civitai.com/models/{model_id or 0}/wizard?step=4'},
)
resp.raise_for_status()
return post_id
def civiti_publish(model_id: int, model_version_id: int, publish_at=None, session=None):
session = session or get_civitai_session()
publish_at = parse_publish_at(publish_at, keep_none=True)
if publish_at:
logging.info(f'Publishing model {model_id!r}\'s version {model_version_id!r}, at {publish_at!r} ...')
else:
logging.info(f'Publishing model {model_id!r}\'s version {model_version_id!r} ...')
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/model.publish',
json={
"json": {
"id": model_id,
"versionIds": [
model_version_id
],
"publishedAt": publish_at,
"authed": True
},
"meta": {
"values": {
"publishedAt": [
"undefined" if publish_at is None else "Date",
]
}
}
},
headers={'Referer': f'https://civitai.com/models/{model_id or 0}/wizard?step=4'},
)
resp.raise_for_status()
def try_find_title(char_name, game_name):
try:
game_cls = GAME_CHARS[game_name.lower()]
ch = game_cls.get(char_name)
if ch:
names = []
if ch.enname:
names.append(str(ch.enname))
if ch.jpname:
names.append(str(ch.jpname))
if ch.cnname:
names.append(str(ch.cnname))
if hasattr(ch, 'krname') and ch.krname:
names.append(str(ch.krname))
return f"{'/'.join(names)} ({game_cls.__official_name__})"
else:
cname = ' '.join(list(map(str.capitalize, char_name.split(' '))))
return f'{cname} ({game_cls.__official_name__})'
except KeyError:
return None
def try_get_title_from_repo(repo):
hf_fs = get_hf_fs()
print(f'datasets/{repo}/meta.json')
if hf_fs.exists(f'datasets/{repo}/meta.json'):
data = json.loads(hf_fs.read_text(f'datasets/{repo}/meta.json'))
character_name = data['name']
source_name = repo.split('_')[-1]
if hf_fs.exists(f'datasets/BangumiBase/{source_name}/meta.json'):
base_data = json.loads(hf_fs.read_text(f'datasets/BangumiBase/{source_name}/meta.json'))
source_full_name = base_data['name']
return f'{character_name} ({source_full_name})'
else:
return character_name
else:
return None
def _tag_decode(text):
return re.sub(r'[\s_]+', ' ', re.sub(r'\\([\\()])', r'\1', text)).strip()
def civitai_publish_from_hf(source, model_name: str = None, model_desc_md: str = None,
version_name: Optional[str] = None, version_desc_md: str = None,
step: Optional[int] = None, epoch: Optional[int] = None, upload_min_epoch: int = 6,
draft: bool = False, publish_at=None, allow_nsfw_images: bool = True,
force_create_model: bool = False, no_ccip_check: bool = False, session=None):
if isinstance(source, Character):
repo = f'AppleHarem/{get_ch_name(source)}'
elif isinstance(source, str):
repo = source
else:
raise TypeError(f'Unknown source type - {source!r}.')
hf_fs = get_hf_fs()
meta_json = json.loads(hf_fs.read_text(f'{repo}/meta.json'))
game_name = repo.split('_')[-1]
dataset_info = meta_json.get('dataset')
ds_size = (384, 512) if not dataset_info or not dataset_info['type'] else dataset_info['type']
with load_dataset_for_character(repo, size=ds_size) as (_, d):
if dataset_info and dataset_info['size']:
dataset_size = dataset_info['size']
else:
dataset_size = len(glob.glob(os.path.join(d, '*.png')))
core_tags, _ = load_tags_from_directory(d)
logging.info(f'Size of dataset if {dataset_size!r}.')
ccip_feats = []
for item in tqdm(list(LocalSource(d)[:10]), desc='Extracting features'):
ccip_feats.append(ccip_extract_feature(item.image))
version_name = version_name or meta_json.get('mark') or 'v1.0'
all_steps = meta_json['steps']
logging.info(f'Available steps: {all_steps!r}.')
if step is not None:
if epoch is not None:
logging.warning(f'Step {step!r} is set, epoch value ({epoch}) will be ignored.')
else:
if epoch is not None:
step = dataset_size * epoch
else:
if 'best_step' in meta_json:
if upload_min_epoch is not None:
upload_min_step = upload_min_epoch * dataset_size
else:
upload_min_step = -1
best_step, best_score = None, None
for score_item in meta_json["scores"]:
if best_step is None or \
(score_item['step'] >= upload_min_step and score_item['score'] >= best_score):
best_step, best_score = score_item['step'], score_item['score']
if best_step is not None:
step = best_step
else:
step = meta_json['best_step']
else:
step = max(all_steps)
logging.info(f'Expected step is {step!r}.')
_, _actual_step = sorted([(abs(s - step), s) for s in all_steps])[0]
if _actual_step != step:
logging.info(f'Actual used step is {_actual_step!r}.')
step = _actual_step
epoch = int(math.ceil(step / dataset_size))
logging.info(f'Using step {step}, epoch {epoch}.')
with TemporaryDirectory() as td:
models_dir = os.path.join(td, 'models')
os.makedirs(models_dir, exist_ok=True)
lora_file = os.path.basename(hf_fs.glob(f'{repo}/{step}/*.safetensors')[0])
pt_file = os.path.basename(hf_fs.glob(f'{repo}/{step}/*.pt')[0])
trigger_word = os.path.splitext(lora_file)[0]
char_name = ' '.join(trigger_word.split('_')[:-1])
models = []
local_lora_file = os.path.join(models_dir, lora_file)
download_file(hf_hub_url(repo, filename=f'{step}/{lora_file}'), local_lora_file)
models.append((local_lora_file, lora_file))
local_pt_file = os.path.join(models_dir, pt_file)
download_file(hf_hub_url(repo, filename=f'{step}/{pt_file}'), local_pt_file)
models.append((local_pt_file, pt_file))
images_dir = os.path.join(td, 'images')
os.makedirs(images_dir, exist_ok=True)
images = []
tags_count = {}
tags_idx = {}
for img_file in hf_fs.glob(f'{repo}/{step}/previews/*.png'):
img_filename = os.path.basename(img_file)
img_name = os.path.splitext(img_filename)[0]
img_info_filename = f'{img_name}_info.txt'
local_img_file = os.path.join(images_dir, img_filename)
download_file(hf_hub_url(repo, filename=f'{step}/previews/{img_filename}'), local_img_file)
local_info_file = os.path.join(images_dir, img_info_filename)
download_file(hf_hub_url(repo, filename=f'{step}/previews/{img_info_filename}'), local_info_file)
info = {}
with open(local_info_file, 'r', encoding='utf-8') as iif:
for line in iif:
line = line.strip()
if line:
info_name, info_text = line.split(':', maxsplit=1)
info[info_name.strip()] = info_text.strip()
meta = {
'cfgScale': int(round(float(info.get('Guidance Scale')))),
'negativePrompt': info.get('Neg Prompt'),
'prompt': info.get('Prompt'),
'sampler': info.get('Sample Method', "Euler a"),
'seed': int(info.get('Seed')),
'steps': int(info.get('Infer Steps')),
'Size': f"{info['Width']}x{info['Height']}",
}
if info.get('Clip Skip'):
meta['clipSkip'] = int(info['Clip Skip'])
if info.get('Model'):
meta['Model'] = info['Model']
pil_img_file = Image.open(local_img_file)
if pil_img_file.info.get('parameters'):
png_info_text = pil_img_file.info['parameters']
find_hash = re.findall(r'Model hash:\s*([a-zA-Z\d]+)', png_info_text, re.IGNORECASE)
if find_hash:
model_hash = find_hash[0].lower()
meta['hashes'] = {"model": model_hash}
meta["resources"] = [
{
"hash": model_hash,
"name": info['Model'],
"type": "model"
}
]
meta["Model hash"] = model_hash
nsfw = (info.get('Safe For Word', info.get('Safe For Work')) or '').lower() != 'yes'
if not nsfw:
cls_, score_ = nsfw_pred(local_img_file)
if cls_ not in {'hentai', 'porn', 'sexy'} and score_ >= 0.65:
pass
else:
nsfw = True
if nsfw and not allow_nsfw_images:
logging.info(f'Image {local_img_file!r} skipped due to its nsfw.')
continue
current_feat = ccip_extract_feature(local_img_file)
similarity = ccip_batch_same([current_feat, *ccip_feats])[0, 1:].mean()
logging.info(f'Similarity of character on image {local_img_file!r}: {similarity!r}')
if similarity < 0.6 and not no_ccip_check:
logging.info(f'Similarity of {local_img_file!r}({similarity!r}) is too low, skipped.')
continue
if not nsfw or allow_nsfw_images:
rating_score = anime_rating_score(local_img_file)
safe_v = int(round(rating_score['safe'] * 10))
safe_r15 = int(round(rating_score['r15'] * 10))
safe_r18 = int(round(rating_score['r18'] * 10))
faces = detect_faces(local_img_file)
if faces:
if len(faces) > 1:
logging.warning('Multiple face detected, skipped!')
continue
(x0, y0, x1, y1), _, _ = faces[0]
width, height = load_image(local_img_file).size
face_area = abs((x1 - x0) * (y1 - y0))
face_ratio = face_area * 1.0 / (width * height)
face_ratio = int(round(face_ratio * 50))
else:
logging.warning('No face detected, skipped!')
continue
images.append((
(-safe_v, -safe_r15, -safe_r18) if False else 0,
-face_ratio,
1 if nsfw else 0,
0 if img_name.startswith('pattern_') else 1,
img_name,
(local_img_file, img_filename, meta)
))
for ptag in info.get('Prompt').split(','):
ptag = ptag.strip()
tags_count[ptag] = tags_count.get(ptag, 0) + 1
if ptag not in tags_idx:
tags_idx[ptag] = len(tags_idx)
images = [item[-1] for item in sorted(images)]
max_tag_cnt = max(tags_count.values())
recommended_tags = sorted([ptag for ptag, cnt in tags_count.items() if cnt == max_tag_cnt],
key=lambda x: tags_idx[x])
# publish model
session = session or get_civitai_session(timeout=30)
model_desc_default = f"""
* Thanks to Civitai's TOS, some images cannot be uploaded. **THE FULL PREVIEW IMAGES CAN BE FOUND ON [HUGGINGFACE](https://huggingface.co/{repo})**.
* **<span style="color:#fa5252">THIS MODEL HAS TWO FILES. YOU NEED TO USE THEM TOGETHER!!!</span>**
* **The associated trigger words are only for reference, it may need to be adjusted at some times**.
* Recommended weight of pt file is 0.5-1.0, weight of LoRA is 0.5-0.85.
* Images were generated using a few fixed prompts and dataset-based clustered prompts. Random seeds were used, ruling out cherry-picking. **What you see here is what you can get.**
* No specialized training was done for outfits. You can check our provided preview post to get the prompts corresponding to the outfits.
* This model is trained with **{plural_word(dataset_size, "image")}**.
## How to Use This Model
**<span style="color:#fa5252">THIS MODEL HAS TWO FILES. YOU NEED TO USE THEM TOGETHER!!!</span>**.
In this case, you need to download both `{pt_file}` and
`{lora_file}`, then **use `{pt_file}` as texture inversion embedding, and use
`{lora_file}` as LoRA at the same time**.
**<span style="color:#fa5252">このモデルには2つのファイルがあります。一緒に使う必要があります!!!</span>**。
この場合、`{pt_file}`と`{lora_file}`の両方をダウンロード
する必要があります。`{pt_file}`をテクスチャ反転埋め込みとして使用し、同時に`{lora_file}`をLoRAとして使用してください。
**<span style="color:#fa5252">这个模型有两个文件。你需要同时使用它们!!!</span>**。
在这种情况下,您需要下载`{pt_file}`和`{lora_file}`这两个文件,然后将`{pt_file}`用作纹理反转嵌入,
同时使用`{lora_file}`作为LoRA。
**<span style="color:#fa5252">이 모델은 두 개의 파일이 있습니다. 두 파일을 함께 사용해야 합니다!!!</span>**.
이 경우에는 `{pt_file}`와 `{lora_file}` 두 파일을 모두 다운로드하신 다음에 **`{pt_file}`을 텍스처 반전 임베딩으로 사용하고,
동시에 `{lora_file}`을 LoRA로 사용하셔야 합니다**.
(Translated with ChatGPT)
The trigger word is `{trigger_word}`, and the recommended tags are `{', '.join(recommended_tags)}`.
## How This Model Is Trained
This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion).
And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs).
And the WebUI Panel provid by [LittleAppleWebUI](https://github.com/LittleApple-fp16/LittleAppleWebUI)
## Why Some Preview Images Not Look Like {" ".join(map(str.capitalize, trigger_word.split("_")))}
**All the prompt texts** used on the preview images (which can be viewed by clicking on the images)
**are automatically generated using clustering algorithms** based on feature information extracted from the
training dataset. The seed used during image generation is also randomly generated, and the images have
not undergone any selection or modification. As a result, there is a possibility of the mentioned
issues occurring.
In practice, based on our internal testing, most models that experience such issues perform better in
actual usage than what is seen in the preview images. **The only thing you may need to do is adjusting
the tags you are using**.
## I Felt This Model May Be Overfitting or Underfitting, What Shall I Do
Our model has been published on [huggingface repository - {repo}](https://huggingface.co/{repo}), where
models of all the steps are saved. Also, we published the training dataset on
[huggingface dataset - {repo}](https://huggingface.co/datasets/{repo}), which may be helpful to you.
## Why Not Just Using The Better-Selected Images
Our model's entire process, from data crawling, training, to generating preview images and publishing,
is **100% automated without any human intervention**. It's an interesting experiment conducted by our team,
and for this purpose, we have developed a complete set of software infrastructure, including data filtering,
automatic training, and automated publishing. Therefore, if possible, we would appreciate more feedback or
suggestions as they are highly valuable to us.
## Why Can't the Desired Character Outfits Be Accurately Generated
Our current training data is sourced from various image websites, and for a fully automated pipeline,
it's challenging to accurately predict which official images a character possesses.
Consequently, outfit generation relies on clustering based on labels from the training dataset
in an attempt to achieve the best possible recreation. We will continue to address this issue and attempt
optimization, but it remains a challenge that cannot be completely resolved. The accuracy of outfit
recreation is also unlikely to match the level achieved by manually trained models.
In fact, this model's greatest strengths lie in recreating the inherent characteristics of the characters
themselves and its relatively strong generalization capabilities, owing to its larger dataset.
As such, **this model is well-suited for tasks such as changing outfits, posing characters, and,
of course, generating NSFW images of characters!**😉".
For the following groups, it is not recommended to use this model and we express regret:
1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.
2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.
3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.
4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.
5. Individuals who finds the generated image content offensive to their values.
"""
model_name = model_name or try_find_title(char_name, game_name) or \
try_get_title_from_repo(repo) or trigger_word.replace('_', ' ')
if not force_create_model:
try:
exist_model = civitai_find_online(model_name, creator='narugo1992')
except ModelNotFound:
model_id = None
else:
logging.info(f'Existing model {exist_model.model_name}({exist_model.model_id}) found.')
model_id = exist_model.model_id
else:
model_id = None
model_id, _ = civitai_upsert_model(
name=model_name,
description_md=model_desc_md or model_desc_default,
tags=[
game_name, f"{game_name} {char_name}", char_name,
'female', 'girl', 'character', 'fully-automated',
*map(_tag_decode, core_tags.keys()),
],
exist_model_id=model_id,
session=session,
)
version_data = civitai_create_version(
model_id=model_id,
version_name=version_name,
description_md=version_desc_md or '',
trigger_words=[
trigger_word,
repr_tags([key for key, _ in sorted(core_tags.items(), key=lambda x: -x[1])]),
],
session=session,
steps=step,
epochs=epoch,
)
version_id = version_data['id']
civitai_upload_models(
model_version_id=version_id,
model_files=models,
model_id=model_id,
session=session,
)
civitai_upload_images(
model_version_id=version_id,
image_files=images,
tags=[
game_name, f"{game_name} {char_name}", char_name,
'female', 'girl', 'character', 'fully-automated', 'random prompt', 'random seed',
*map(_tag_decode, core_tags.keys()),
],
model_id=model_id,
session=session,
)
if draft:
logging.info(f'Draft of model {model_id!r} created.')
else:
civiti_publish(model_id, version_id, publish_at, session)
return civitai_get_model_info(model_id, session)['id']
def get_draft_models(session=None):
session = session or get_civitai_session()
resp = srequest(
session, 'GET', 'https://civitai.com/api/trpc/model.getMyDraftModels',
params={
'input': json.dumps({"json": {"page": 1, "limit": 200, "authed": True}}),
},
headers={'Referer': f'https://civitai.com/user'},
)
return resp.json()['result']['data']['json']['items']
def delete_model(model_id: int, session=None):
session = session or get_civitai_session()
resp = srequest(
session, 'POST', 'https://civitai.com/api/trpc/model.delete',
json={"json": {"id": model_id, "permanently": False, "authed": True}},
headers={'Referer': f'https://civitai.com/models/{model_id}'},
)
resp.raise_for_status()
|