Spaces:
Runtime error
Runtime error
Commit
·
5001698
1
Parent(s):
c2ce80d
Update app.py
Browse files
app.py
CHANGED
@@ -27,113 +27,143 @@ stop_token_ids = [0]
|
|
27 |
print('Guanaco model loaded into memory.')
|
28 |
|
29 |
|
30 |
-
def
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
'''
|
47 |
-
|
48 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
'''
|
50 |
This is for summarization
|
51 |
'''
|
52 |
-
tooShortForKeyword = False
|
53 |
-
obj = newline
|
54 |
-
doc = ""
|
55 |
-
if len(obj["target"]) > 1:
|
56 |
-
doc += obj["title"] + ". " + obj["target"][0] + " " + obj["target"][1]
|
57 |
-
elif len(obj["target"]) == 1:
|
58 |
-
tooShortForKeyword = True
|
59 |
-
doc += obj["title"] + ". " + obj["target"][0]
|
60 |
-
else:
|
61 |
-
tooShortForKeyword = True
|
62 |
-
doc += obj["title"]
|
63 |
-
text = doc
|
64 |
prompt = """
|
65 |
Can you explain the main idea of what is being studied in the following paragraph for someone who is not familiar with the topic. Comment on areas of application.:
|
66 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
formatted_prompt = (
|
68 |
f"A chat between a curious human and an artificial intelligence assistant."
|
69 |
f"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
|
70 |
-
f"### Human: {prompt +
|
71 |
f"### Assistant:"
|
72 |
)
|
73 |
-
inputs = tok(formatted_prompt, return_tensors="pt")
|
74 |
-
outputs =
|
75 |
output = tok.decode(outputs[0], skip_special_tokens=True)
|
76 |
index_response = output.find("### Assistant: ") + 15
|
77 |
-
if (output[index_response:index_response + 10] == "Certainly!"):
|
78 |
index_response += 10
|
79 |
end_response = output.rfind('.') + 1
|
80 |
response = output[index_response:end_response]
|
81 |
-
|
82 |
|
83 |
-
'''
|
84 |
-
Keyphrase extraction.
|
85 |
-
'''
|
86 |
-
# the document is the title and first two sentences of the abstract.
|
87 |
-
|
88 |
-
obj = newline
|
89 |
-
doc = ""
|
90 |
-
if len(obj["target"]) > 1:
|
91 |
-
doc += obj["title"] + ". " + obj["target"][0] + " " + obj["target"][1]
|
92 |
-
kw_model = KeyBERT(model="all-MiniLM-L6-v2")
|
93 |
-
vectorizer = KeyphraseCountVectorizer()
|
94 |
-
top_n = 2
|
95 |
-
keywords = kw_model.extract_keywords(doc, stop_words="english", top_n = top_n, vectorizer=vectorizer, use_mmr=True)
|
96 |
-
my_keywords = []
|
97 |
-
for i in range(top_n):
|
98 |
-
add = True
|
99 |
-
for j in range(top_n):
|
100 |
-
if i != j:
|
101 |
-
if keywords[i][0] in keywords[j][0]:
|
102 |
-
add = False
|
103 |
-
if add:
|
104 |
-
my_keywords.append(keywords[i][0])
|
105 |
-
for entry in my_keywords:
|
106 |
-
print(entry)
|
107 |
-
'''
|
108 |
-
This is for feeding the keyphrases into Guanaco.
|
109 |
-
'''
|
110 |
-
responseTwo = ""
|
111 |
-
keyword_string = ""
|
112 |
-
if not tooShortForKeyword:
|
113 |
-
separator = ', '
|
114 |
-
keyword_string = separator.join(my_keywords)
|
115 |
-
prompt = "What is the purpose of studying " + keyword_string + "? Comment on areas of application."
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
fn=
|
134 |
-
inputs=[gr.Textbox(label="Title"), gr.Textbox(label="Abstract")],
|
135 |
-
outputs=[gr.Textbox(label="Keyphrases"), gr.Textbox(label="Keyphrase Elaboration"), gr.Textbox(label="Plain Language Summary")],
|
136 |
-
)
|
137 |
-
demo.launch()
|
138 |
|
|
|
139 |
|
|
|
27 |
print('Guanaco model loaded into memory.')
|
28 |
|
29 |
|
30 |
+
def keyphraseElaboration(title, abstract, userGivenKeyphrases, maxTokensElaboration, numAbstractSentencesKeyphrase):
|
31 |
+
numKeywordsToExtract = 2
|
32 |
+
if userGivenKeyphrases == "":
|
33 |
+
'''
|
34 |
+
Process Abstract (eliminate word abstract at front and put into sentences)
|
35 |
+
'''
|
36 |
+
# eliminate word lowercase "abstract" or "abstract." at beginning of abstract text
|
37 |
+
if abstract.lower()[0:9] == "abstract.":
|
38 |
+
abstract = abstract[9:]
|
39 |
+
elif abstract.lower()[0:8] == "abstract":
|
40 |
+
abstract = abstract[8:]
|
41 |
+
abstractSentences = sent_tokenize(abstract)
|
42 |
+
tooShort = True # if the document only has one or fewer abstract sentences, then the document is too short for the keyphrase extraction/elaboration to give a meaningful output.
|
43 |
+
numAbstractSentences = len(abstractSentences)
|
44 |
+
if numAbstractSentences > 1:
|
45 |
+
tooShort = False
|
46 |
+
numAbstractSentencesKeyphrase = min(numAbstractSentences, numAbstractSentencesKeyphrase)
|
47 |
+
doc = f"{title}. {' '.join(abstractSentences[:numAbstractSentencesKeyphrase])}"
|
48 |
+
kw_model = KeyBERT(model="all-MiniLM-L6-v2")
|
49 |
+
vectorizer = KeyphraseCountVectorizer()
|
50 |
+
keywordsOut = kw_model.extract_keywords(doc, stop_words="english", top_n = numKeywordsToExtract, vectorizer=vectorizer, use_mmr=True)
|
51 |
+
keyBERTKeywords = [x[0] for x in keywordsOut]
|
52 |
+
for entry in keyBERTKeywords:
|
53 |
+
print(entry)
|
54 |
+
|
55 |
+
keywordString = ""
|
56 |
+
if userGivenKeyphrases != "":
|
57 |
+
keywordString = userGivenKeyphrases
|
58 |
+
elif not tooShort:
|
59 |
+
separator = ', '
|
60 |
+
keywordString = separator.join(keyBERTKeywords)
|
61 |
+
prompt = "What is the purpose of studying " + keywordString + "? Comment on areas of application."
|
62 |
+
if keywordString != "":
|
63 |
+
formatted_prompt = (
|
64 |
+
f"A chat between a curious human and an artificial intelligence assistant."
|
65 |
+
f"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
|
66 |
+
f"### Human: {prompt} \n"
|
67 |
+
f"### Assistant:"
|
68 |
+
)
|
69 |
+
inputs = tok(formatted_prompt, return_tensors="pt").to(deviceElaboration)
|
70 |
+
outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=maxTokensElaboration)
|
71 |
+
output = tok.decode(outputs[0], skip_special_tokens=True)
|
72 |
+
index_response = output.find("### Assistant: ") + 15
|
73 |
+
end_response = output.rfind('.') + 1
|
74 |
+
response = output[index_response:end_response]
|
75 |
+
return keywordString, response
|
76 |
+
|
77 |
+
def plainLanguageSummary(title, abstract, maxTokensSummary, numAbstractSentencesSummary):
|
78 |
'''
|
79 |
+
Process Abstract (eliminate word abstract at front and put into sentences)
|
80 |
'''
|
81 |
+
# eliminate word lowercase "abstract" or "abstract." at beginning of abstract text
|
82 |
+
if abstract.lower()[0:9] == "abstract.":
|
83 |
+
abstract = abstract[9:]
|
84 |
+
elif abstract.lower()[0:8] == "abstract":
|
85 |
+
abstract = abstract[8:]
|
86 |
+
abstractSentences = sent_tokenize(abstract)
|
87 |
'''
|
88 |
This is for summarization
|
89 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
prompt = """
|
91 |
Can you explain the main idea of what is being studied in the following paragraph for someone who is not familiar with the topic. Comment on areas of application.:
|
92 |
"""
|
93 |
+
text = ""
|
94 |
+
if text == "":
|
95 |
+
numAbstractSentences = len(abstractSentences)
|
96 |
+
numAbstractSentencesSummary = min(numAbstractSentences, numAbstractSentencesSummary)
|
97 |
+
text = f"{title}. {' '.join(abstractSentences[:numAbstractSentencesSummary])}"
|
98 |
+
|
99 |
formatted_prompt = (
|
100 |
f"A chat between a curious human and an artificial intelligence assistant."
|
101 |
f"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
|
102 |
+
f"### Human: {prompt + text} \n"
|
103 |
f"### Assistant:"
|
104 |
)
|
105 |
+
inputs = tok(formatted_prompt, return_tensors="pt").to(deviceSummary)
|
106 |
+
outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=maxTokensSummary)
|
107 |
output = tok.decode(outputs[0], skip_special_tokens=True)
|
108 |
index_response = output.find("### Assistant: ") + 15
|
109 |
+
if (output[index_response:index_response + 10] == "Certainly!" or output[index_response:index_response + 10] == "Certainly,"):
|
110 |
index_response += 10
|
111 |
end_response = output.rfind('.') + 1
|
112 |
response = output[index_response:end_response]
|
113 |
+
return response
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
with gr.Blocks() as demo:
|
117 |
+
with gr.Row():
|
118 |
+
with gr.Column():
|
119 |
+
title = gr.Textbox(label="Title")
|
120 |
+
abstract = gr.Textbox(label="Abstract")
|
121 |
+
userDefinedKeyphrases = gr.Textbox(label="Your keyphrases (Optional - Model will elaborate on these keyphrases without using the title or abstract)")
|
122 |
+
keyphraseButton = gr.Button("Generate Keyphrase Elaboration")
|
123 |
+
summaryButton = gr.Button("Generate Plain Language Summary")
|
124 |
+
with gr.Accordion(label="Parameters", open=False):
|
125 |
+
maxTokensElaboration = gr.Slider(
|
126 |
+
label="Maximum Number of Elaboration Tokens",
|
127 |
+
value=500,
|
128 |
+
minimum=0,
|
129 |
+
maximum=2048,
|
130 |
+
step=10,
|
131 |
+
interactive=True,
|
132 |
+
info="Length of Keyphrase Elaboration",
|
133 |
+
)
|
134 |
+
maxTokensSummary = gr.Slider(
|
135 |
+
label="Maximum Number of Summary Tokens",
|
136 |
+
value=300,
|
137 |
+
minimum=0,
|
138 |
+
maximum=2048,
|
139 |
+
step=10,
|
140 |
+
interactive=True,
|
141 |
+
info="Length of Plain Language Summary",
|
142 |
+
)
|
143 |
+
numAbstractSentencesKeyphrase = gr.Slider(
|
144 |
+
label="Number of Abstract Sentences to use for Keyphrase Extraction",
|
145 |
+
value=2,
|
146 |
+
minimum=0,
|
147 |
+
maximum=20,
|
148 |
+
step=1,
|
149 |
+
interactive=True,
|
150 |
+
info="Default: use first two sentences of abstract."
|
151 |
+
)
|
152 |
+
numAbstractSentencesSummary = gr.Slider(
|
153 |
+
label="Number of Abstract Sentences to use for Plain Language Summary",
|
154 |
+
value=2,
|
155 |
+
minimum=0,
|
156 |
+
maximum=20,
|
157 |
+
step=1,
|
158 |
+
interactive=True,
|
159 |
+
info="Default: use first two sentences of abstract."
|
160 |
+
)
|
161 |
+
with gr.Column():
|
162 |
+
outputKeyphrase = [gr.Textbox(label="Keyphrases"), gr.Textbox(label="Keyphrase Elaboration")]
|
163 |
+
outputSummary = gr.Textbox(label="Plain Language Summary")
|
164 |
|
165 |
+
keyphraseButton.click(fn=keyphraseElaboration, inputs=[title, abstract, userDefinedKeyphrases, maxTokensElaboration, numAbstractSentencesKeyphrase], outputs=outputKeyphrase)
|
166 |
+
summaryButton.click(fn=plainLanguageSummary, inputs=[title, abstract, maxTokensSummary, numAbstractSentencesSummary], outputs = outputSummary)
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
demo.launch(share=True)
|
169 |
|