Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import gradio as gr | |
| import spaces | |
| import torch | |
| from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline | |
| from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition | |
| from diffusers.utils import export_to_video, load_video | |
| pipe = LTXConditionPipeline.from_pretrained("linoyts/LTX-Video-0.9.7-distilled-diffusers", torch_dtype=torch.bfloat16) | |
| pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-Latent-Spatial-Upsampler-diffusers", vae=pipe.vae, torch_dtype=torch.bfloat16) | |
| pipe.to("cuda") | |
| pipe_upsample.to("cuda") | |
| pipe.vae.enable_tiling() | |
| def round_to_nearest_resolution_acceptable_by_vae(height, width): | |
| height = height - (height % pipe.vae_temporal_compression_ratio) | |
| width = width - (width % pipe.vae_temporal_compression_ratio) | |
| return height, width | |
| def generate(prompt, | |
| negative_prompt, | |
| image, | |
| steps, | |
| num_frames, | |
| seed, | |
| randomize_seed): | |
| expected_height, expected_width = 768, 1152 | |
| downscale_factor = 2 / 3 | |
| if image is not None: | |
| condition1 = LTXVideoCondition(video=image, frame_index=0) | |
| else: | |
| condition1 = None | |
| # Part 1. Generate video at smaller resolution | |
| # Text-only conditioning is also supported without the need to pass `conditions` | |
| downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor) | |
| downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width) | |
| latents = pipe( | |
| conditions=condition1, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=downscaled_width, | |
| height=downscaled_height, | |
| num_frames=num_frames, | |
| num_inference_steps=steps, | |
| decode_timestep = 0.05, | |
| decode_noise_scale = 0.025, | |
| generator=torch.Generator().manual_seed(seed), | |
| output_type="latent", | |
| ).frames | |
| # Part 2. Upscale generated video using latent upsampler with fewer inference steps | |
| # The available latent upsampler upscales the height/width by 2x | |
| upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2 | |
| upscaled_latents = pipe_upsample( | |
| latents=latents, | |
| output_type="latent" | |
| ).frames | |
| # Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended) | |
| video = pipe( | |
| conditions=condition1, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=upscaled_width, | |
| height=upscaled_height, | |
| num_frames=num_frames, | |
| denoise_strength=0.4, # Effectively, 4 inference steps out of 10 | |
| num_inference_steps=10, | |
| latents=upscaled_latents, | |
| decode_timestep=0.05, | |
| image_cond_noise_scale=0.025, | |
| generator=torch.Generator().manual_seed(seed), | |
| output_type="pil", | |
| ).frames[0] | |
| # Part 4. Downscale the video to the expected resolution | |
| video = [frame.resize((expected_width, expected_height)) for frame in video] | |
| return video | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 900px; | |
| } | |
| """ | |
| js_func = """ | |
| function refresh() { | |
| const url = new URL(window.location); | |
| if (url.searchParams.get('__theme') !== 'dark') { | |
| url.searchParams.set('__theme', 'dark'); | |
| window.location.href = url.href; | |
| } | |
| } | |
| """ | |
| with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo: | |
| gr.Markdown("# LTX Video 0.9.7 Distilled") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Group(): | |
| image = gr.Image(label="") | |
| prompt = gr.Textbox(label="prompt") | |
| run_button = gr.Button() | |
| with gr.Column(): | |
| output = gr.Video(interactive=False) | |
| with gr.Accordion("Advanced settings", open=False): | |
| n_prompt = gr.Textbox(label="negative prompt", value="", visible=False) | |
| with gr.Row(): | |
| seed = gr.Number(label="seed", value=0, precision=0) | |
| randomize_seed = gr.Checkbox(label="randomize seed") | |
| with gr.Row(): | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=30, value=8, step=1) | |
| num_frames = gr.Slider(label="# frames", minimum=1, maximum=200, value=161, step=1) | |
| run_button.click(fn=generate, | |
| inputs=[prompt, | |
| negative_prompt, | |
| image, | |
| steps, | |
| num_frames, | |
| seed, | |
| randomize_seed], | |
| outputs=[output]) | |
| demo.launch() | |
 
			
