import streamlit as st from transformers import pipeline from PIL import Image pipeline = pipeline(task="image-classification", model="Libidrave/CartoonOrNotv2") st.title("Cartoon Or Not Image Classifiers") file_name = st.file_uploader("Upload an Image to predict") if file_name is not None: col1, col2 = st.columns(2) image = Image.open(file_name) col1.image(image, use_column_width=True) predictions = pipeline(image) col2.header("Probabilities") for p in predictions: col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%") """[View the Model Repository](https://github.com/Libidrave/CartoonOrNot/blob/main/TrainingModel.ipynb)"""