Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,759 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tiger
|
3 |
+
import cas9att
|
4 |
+
import cas9attvcf
|
5 |
+
import cas9off
|
6 |
+
import cas12
|
7 |
+
import cas12lstm
|
8 |
+
import cas12lstmvcf
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
import plotly.graph_objs as go
|
12 |
+
import numpy as np
|
13 |
+
from pathlib import Path
|
14 |
+
import zipfile
|
15 |
+
import io
|
16 |
+
import gtracks
|
17 |
+
import subprocess
|
18 |
+
import cyvcf2
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
# title and documentation
|
23 |
+
st.markdown(Path('crisprTool.md').read_text(), unsafe_allow_html=True)
|
24 |
+
st.divider()
|
25 |
+
|
26 |
+
CRISPR_MODELS = ['Cas9', 'Cas12', 'Cas13d']
|
27 |
+
|
28 |
+
selected_model = st.selectbox('Select CRISPR model:', CRISPR_MODELS, key='selected_model')
|
29 |
+
cas9att_path = 'cas9_model/Cas9_MultiHeadAttention_weights.h5'
|
30 |
+
cas12lstm_path = 'cas12_model/BiLSTM_Cpf1_weights.h5'
|
31 |
+
|
32 |
+
#plot functions
|
33 |
+
def generate_coolbox_plot(bigwig_path, region, output_image_path):
|
34 |
+
frame = CoolBox()
|
35 |
+
frame += BigWig(bigwig_path)
|
36 |
+
frame.plot(region, savefig=output_image_path)
|
37 |
+
|
38 |
+
def generate_pygenometracks_plot(bigwig_file_path, region, output_image_path):
|
39 |
+
# Define the configuration for pyGenomeTracks
|
40 |
+
tracks = """
|
41 |
+
[bigwig]
|
42 |
+
file = {}
|
43 |
+
height = 4
|
44 |
+
color = blue
|
45 |
+
min_value = 0
|
46 |
+
max_value = 10
|
47 |
+
""".format(bigwig_file_path)
|
48 |
+
|
49 |
+
# Write the configuration to a temporary INI file
|
50 |
+
config_file_path = "pygenometracks.ini"
|
51 |
+
with open(config_file_path, 'w') as configfile:
|
52 |
+
configfile.write(tracks)
|
53 |
+
|
54 |
+
# Define the region to plot
|
55 |
+
region_dict = {'chrom': region.split(':')[0],
|
56 |
+
'start': int(region.split(':')[1].split('-')[0]),
|
57 |
+
'end': int(region.split(':')[1].split('-')[1])}
|
58 |
+
|
59 |
+
# Generate the plot
|
60 |
+
plot_tracks(tracks_file=config_file_path,
|
61 |
+
region=region_dict,
|
62 |
+
out_file_name=output_image_path)
|
63 |
+
|
64 |
+
@st.cache_data
|
65 |
+
def convert_df(df):
|
66 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
67 |
+
return df.to_csv().encode('utf-8')
|
68 |
+
|
69 |
+
|
70 |
+
def mode_change_callback():
|
71 |
+
if st.session_state.mode in {tiger.RUN_MODES['all'], tiger.RUN_MODES['titration']}: # TODO: support titration
|
72 |
+
st.session_state.check_off_targets = False
|
73 |
+
st.session_state.disable_off_target_checkbox = True
|
74 |
+
else:
|
75 |
+
st.session_state.disable_off_target_checkbox = False
|
76 |
+
|
77 |
+
|
78 |
+
def progress_update(update_text, percent_complete):
|
79 |
+
with progress.container():
|
80 |
+
st.write(update_text)
|
81 |
+
st.progress(percent_complete / 100)
|
82 |
+
|
83 |
+
|
84 |
+
def initiate_run():
|
85 |
+
# initialize state variables
|
86 |
+
st.session_state.transcripts = None
|
87 |
+
st.session_state.input_error = None
|
88 |
+
st.session_state.on_target = None
|
89 |
+
st.session_state.titration = None
|
90 |
+
st.session_state.off_target = None
|
91 |
+
|
92 |
+
# initialize transcript DataFrame
|
93 |
+
transcripts = pd.DataFrame(columns=[tiger.ID_COL, tiger.SEQ_COL])
|
94 |
+
|
95 |
+
# manual entry
|
96 |
+
if st.session_state.entry_method == ENTRY_METHODS['manual']:
|
97 |
+
transcripts = pd.DataFrame({
|
98 |
+
tiger.ID_COL: ['ManualEntry'],
|
99 |
+
tiger.SEQ_COL: [st.session_state.manual_entry]
|
100 |
+
}).set_index(tiger.ID_COL)
|
101 |
+
|
102 |
+
# fasta file upload
|
103 |
+
elif st.session_state.entry_method == ENTRY_METHODS['fasta']:
|
104 |
+
if st.session_state.fasta_entry is not None:
|
105 |
+
fasta_path = st.session_state.fasta_entry.name
|
106 |
+
with open(fasta_path, 'w') as f:
|
107 |
+
f.write(st.session_state.fasta_entry.getvalue().decode('utf-8'))
|
108 |
+
transcripts = tiger.load_transcripts([fasta_path], enforce_unique_ids=False)
|
109 |
+
os.remove(fasta_path)
|
110 |
+
|
111 |
+
# convert to upper case as used by tokenizer
|
112 |
+
transcripts[tiger.SEQ_COL] = transcripts[tiger.SEQ_COL].apply(lambda s: s.upper().replace('U', 'T'))
|
113 |
+
|
114 |
+
# ensure all transcripts have unique identifiers
|
115 |
+
if transcripts.index.has_duplicates:
|
116 |
+
st.session_state.input_error = "Duplicate transcript ID's detected in fasta file"
|
117 |
+
|
118 |
+
# ensure all transcripts only contain nucleotides A, C, G, T, and wildcard N
|
119 |
+
elif not all(transcripts[tiger.SEQ_COL].apply(lambda s: set(s).issubset(tiger.NUCLEOTIDE_TOKENS.keys()))):
|
120 |
+
st.session_state.input_error = 'Transcript(s) must only contain upper or lower case A, C, G, and Ts or Us'
|
121 |
+
|
122 |
+
# ensure all transcripts satisfy length requirements
|
123 |
+
elif any(transcripts[tiger.SEQ_COL].apply(lambda s: len(s) < tiger.TARGET_LEN)):
|
124 |
+
st.session_state.input_error = 'Transcript(s) must be at least {:d} bases.'.format(tiger.TARGET_LEN)
|
125 |
+
|
126 |
+
# run model if we have any transcripts
|
127 |
+
elif len(transcripts) > 0:
|
128 |
+
st.session_state.transcripts = transcripts
|
129 |
+
|
130 |
+
def parse_gene_annotations(file_path):
|
131 |
+
gene_dict = {}
|
132 |
+
with open(file_path, 'r') as file:
|
133 |
+
headers = file.readline().strip().split('\t') # Assuming tab-delimited file
|
134 |
+
symbol_idx = headers.index('Approved symbol') # Find index of 'Approved symbol'
|
135 |
+
ensembl_idx = headers.index('Ensembl gene ID') # Find index of 'Ensembl gene ID'
|
136 |
+
for line in file:
|
137 |
+
values = line.strip().split('\t')
|
138 |
+
# Ensure we have enough values and add mapping from symbol to Ensembl ID
|
139 |
+
if len(values) > max(symbol_idx, ensembl_idx):
|
140 |
+
gene_dict[values[symbol_idx]] = values[ensembl_idx]
|
141 |
+
return gene_dict
|
142 |
+
|
143 |
+
# Replace 'your_annotation_file.txt' with the path to your actual gene annotation file
|
144 |
+
gene_annotations = parse_gene_annotations('Human_genes_HUGO_02242024_annotation.txt')
|
145 |
+
gene_symbol_list = list(gene_annotations.keys()) # List of gene symbols for the autocomplete feature
|
146 |
+
# Check if the selected model is Cas9
|
147 |
+
if selected_model == 'Cas9':
|
148 |
+
# Use a radio button to select enzymes, making sure only one can be selected at a time
|
149 |
+
target_selection = st.radio(
|
150 |
+
"Select either on-target, on-target with mutation or off-target:",
|
151 |
+
('on-target', 'mutation', 'off-target'),
|
152 |
+
key='target_selection'
|
153 |
+
)
|
154 |
+
if 'current_gene_symbol' not in st.session_state:
|
155 |
+
st.session_state['current_gene_symbol'] = ""
|
156 |
+
|
157 |
+
# Define a function to clean up old files
|
158 |
+
def clean_up_old_files(gene_symbol):
|
159 |
+
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
|
160 |
+
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
|
161 |
+
csv_file_path = f"{gene_symbol}_crispr_predictions.csv"
|
162 |
+
for path in [genbank_file_path, bed_file_path, csv_file_path]:
|
163 |
+
if os.path.exists(path):
|
164 |
+
os.remove(path)
|
165 |
+
|
166 |
+
|
167 |
+
# Gene symbol entry with autocomplete-like feature
|
168 |
+
gene_symbol = st.selectbox('Enter a Gene Symbol:', [''] + gene_symbol_list, key='gene_symbol',
|
169 |
+
format_func=lambda x: x if x else "")
|
170 |
+
|
171 |
+
# Handle gene symbol change and file cleanup
|
172 |
+
if gene_symbol != st.session_state['current_gene_symbol'] and gene_symbol:
|
173 |
+
if st.session_state['current_gene_symbol']:
|
174 |
+
# Clean up files only if a different gene symbol is entered and a previous symbol exists
|
175 |
+
clean_up_old_files(st.session_state['current_gene_symbol'])
|
176 |
+
# Update the session state with the new gene symbol
|
177 |
+
st.session_state['current_gene_symbol'] = gene_symbol
|
178 |
+
|
179 |
+
if target_selection == 'on-target':
|
180 |
+
# Prediction button
|
181 |
+
predict_button = st.button('Predict on-target')
|
182 |
+
|
183 |
+
if 'exons' not in st.session_state:
|
184 |
+
st.session_state['exons'] = []
|
185 |
+
|
186 |
+
# Process predictions
|
187 |
+
if predict_button and gene_symbol:
|
188 |
+
with st.spinner('Predicting... Please wait'):
|
189 |
+
predictions, gene_sequence, exons = cas9att.process_gene(gene_symbol, cas9att_path)
|
190 |
+
sorted_predictions = sorted(predictions, key=lambda x: x[8], reverse=True)[:10]
|
191 |
+
st.session_state['on_target_results'] = sorted_predictions
|
192 |
+
st.session_state['gene_sequence'] = gene_sequence # Save gene sequence in session state
|
193 |
+
st.session_state['exons'] = exons # Store exon data
|
194 |
+
|
195 |
+
# Notify the user once the process is completed successfully.
|
196 |
+
st.success('Prediction completed!')
|
197 |
+
st.session_state['prediction_made'] = True
|
198 |
+
|
199 |
+
if 'on_target_results' in st.session_state and st.session_state['on_target_results']:
|
200 |
+
ensembl_id = gene_annotations.get(gene_symbol, 'Unknown') # Get Ensembl ID or default to 'Unknown'
|
201 |
+
col1, col2, col3 = st.columns(3)
|
202 |
+
with col1:
|
203 |
+
st.markdown("**Genome**")
|
204 |
+
st.markdown("Homo sapiens")
|
205 |
+
with col2:
|
206 |
+
st.markdown("**Gene**")
|
207 |
+
st.markdown(f"{gene_symbol} : {ensembl_id} (primary)")
|
208 |
+
with col3:
|
209 |
+
st.markdown("**Nuclease**")
|
210 |
+
st.markdown("SpCas9")
|
211 |
+
# Include "Target" in the DataFrame's columns
|
212 |
+
try:
|
213 |
+
df = pd.DataFrame(st.session_state['on_target_results'],
|
214 |
+
columns=["Chr", "Start Pos", "End Pos", "Strand", "Transcript", "Exon", "Target", "gRNA", "Prediction"])
|
215 |
+
st.dataframe(df)
|
216 |
+
except ValueError as e:
|
217 |
+
st.error(f"DataFrame creation error: {e}")
|
218 |
+
# Optionally print or log the problematic data for debugging:
|
219 |
+
print(st.session_state['on_target_results'])
|
220 |
+
|
221 |
+
# Initialize Plotly figure
|
222 |
+
fig = go.Figure()
|
223 |
+
|
224 |
+
EXON_BASE = 0 # Base position for exons and CDS on the Y axis
|
225 |
+
EXON_HEIGHT = 0.02 # How 'tall' the exon markers should appear
|
226 |
+
|
227 |
+
# Plot Exons as small markers on the X-axis
|
228 |
+
for exon in st.session_state['exons']:
|
229 |
+
exon_start, exon_end = exon['start'], exon['end']
|
230 |
+
fig.add_trace(go.Bar(
|
231 |
+
x=[(exon_start + exon_end) / 2],
|
232 |
+
y=[EXON_HEIGHT],
|
233 |
+
width=[exon_end - exon_start],
|
234 |
+
base=EXON_BASE,
|
235 |
+
marker_color='rgba(128, 0, 128, 0.5)',
|
236 |
+
name='Exon'
|
237 |
+
))
|
238 |
+
|
239 |
+
VERTICAL_GAP = 0.2 # Gap between different ranks
|
240 |
+
|
241 |
+
# Define max and min Y values based on strand and rank
|
242 |
+
MAX_STRAND_Y = 0.1 # Maximum Y value for positive strand results
|
243 |
+
MIN_STRAND_Y = -0.1 # Minimum Y value for negative strand results
|
244 |
+
|
245 |
+
# Iterate over top 5 sorted predictions to create the plot
|
246 |
+
for i, prediction in enumerate(st.session_state['on_target_results'][:5], start=1): # Only top 5
|
247 |
+
chrom, start, end, strand, transcript, exon, target, gRNA, prediction_score = prediction
|
248 |
+
midpoint = (int(start) + int(end)) / 2
|
249 |
+
|
250 |
+
# Vertical position based on rank, modified by strand
|
251 |
+
y_value = (MAX_STRAND_Y - (i - 1) * VERTICAL_GAP) if strand == '1' or strand == '+' else (
|
252 |
+
MIN_STRAND_Y + (i - 1) * VERTICAL_GAP)
|
253 |
+
|
254 |
+
fig.add_trace(go.Scatter(
|
255 |
+
x=[midpoint],
|
256 |
+
y=[y_value],
|
257 |
+
mode='markers+text',
|
258 |
+
marker=dict(symbol='triangle-up' if strand == '1' or strand == '+' else 'triangle-down',
|
259 |
+
size=12),
|
260 |
+
text=f"Rank: {i}", # Text label
|
261 |
+
hoverinfo='text',
|
262 |
+
hovertext=f"Rank: {i}<br>Chromosome: {chrom}<br>Target Sequence: {target}<br>gRNA: {gRNA}<br>Start: {start}<br>End: {end}<br>Strand: {'+' if strand == '1' or strand == '+' else '-'}<br>Transcript: {transcript}<br>Prediction: {prediction_score:.4f}",
|
263 |
+
))
|
264 |
+
|
265 |
+
# Update layout for clarity and interaction
|
266 |
+
fig.update_layout(
|
267 |
+
title='Top 5 gRNA Sequences by Prediction Score',
|
268 |
+
xaxis_title='Genomic Position',
|
269 |
+
yaxis_title='Strand',
|
270 |
+
yaxis=dict(tickvals=[MAX_STRAND_Y, MIN_STRAND_Y], ticktext=['+', '-']),
|
271 |
+
showlegend=False,
|
272 |
+
hovermode='x unified',
|
273 |
+
)
|
274 |
+
|
275 |
+
# Display the plot
|
276 |
+
st.plotly_chart(fig)
|
277 |
+
|
278 |
+
if 'gene_sequence' in st.session_state and st.session_state['gene_sequence']:
|
279 |
+
gene_symbol = st.session_state['current_gene_symbol']
|
280 |
+
gene_sequence = st.session_state['gene_sequence']
|
281 |
+
|
282 |
+
# Define file paths
|
283 |
+
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
|
284 |
+
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
|
285 |
+
csv_file_path = f"{gene_symbol}_crispr_predictions.csv"
|
286 |
+
plot_image_path = f"{gene_symbol}_gtracks_plot.png"
|
287 |
+
|
288 |
+
|
289 |
+
# Generate files
|
290 |
+
cas9att.generate_genbank_file_from_df(df, gene_sequence, gene_symbol, genbank_file_path)
|
291 |
+
cas9att.create_bed_file_from_df(df, bed_file_path)
|
292 |
+
cas9att.create_csv_from_df(df, csv_file_path)
|
293 |
+
|
294 |
+
# Prepare an in-memory buffer for the ZIP file
|
295 |
+
zip_buffer = io.BytesIO()
|
296 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
297 |
+
# For each file, add it to the ZIP file
|
298 |
+
zip_file.write(genbank_file_path)
|
299 |
+
zip_file.write(bed_file_path)
|
300 |
+
zip_file.write(csv_file_path)
|
301 |
+
|
302 |
+
|
303 |
+
# Important: move the cursor to the beginning of the BytesIO buffer before reading it
|
304 |
+
zip_buffer.seek(0)
|
305 |
+
|
306 |
+
# Specify the region you want to visualize
|
307 |
+
min_start = df['Start Pos'].min()
|
308 |
+
max_end = df['End Pos'].max()
|
309 |
+
chromosome = df['Chr'].mode()[0] # Assumes most common chromosome is the target
|
310 |
+
region = f"{chromosome}:{min_start}-{max_end}"
|
311 |
+
|
312 |
+
# Generate the pyGenomeTracks plot
|
313 |
+
gtracks_command = f"gtracks {region} {bed_file_path} {plot_image_path}"
|
314 |
+
subprocess.run(gtracks_command, shell=True)
|
315 |
+
st.image(plot_image_path)
|
316 |
+
|
317 |
+
# Display the download button for the ZIP file
|
318 |
+
st.download_button(
|
319 |
+
label="Download GenBank, BED, CSV files as ZIP",
|
320 |
+
data=zip_buffer.getvalue(),
|
321 |
+
file_name=f"{gene_symbol}_files.zip",
|
322 |
+
mime="application/zip"
|
323 |
+
)
|
324 |
+
elif target_selection == 'mutation':
|
325 |
+
# Prediction button
|
326 |
+
predict_button = st.button('Predict on-target')
|
327 |
+
vcf_reader = cyvcf2.VCF('SRR25934512.filter.snps.indels.vcf.gz')
|
328 |
+
|
329 |
+
if 'exons' not in st.session_state:
|
330 |
+
st.session_state['exons'] = []
|
331 |
+
|
332 |
+
# Process predictions
|
333 |
+
if predict_button and gene_symbol:
|
334 |
+
with st.spinner('Predicting... Please wait'):
|
335 |
+
predictions, gene_sequence, exons = cas9attvcf.process_gene(gene_symbol, vcf_reader, cas9att_path)
|
336 |
+
full_predictions = sorted(predictions, key=lambda x: x[8], reverse=True)
|
337 |
+
sorted_predictions = sorted(predictions, key=lambda x: x[8], reverse=True)[:10]
|
338 |
+
st.session_state['full_results'] = full_predictions
|
339 |
+
st.session_state['on_target_results'] = sorted_predictions
|
340 |
+
st.session_state['gene_sequence'] = gene_sequence # Save gene sequence in session state
|
341 |
+
st.session_state['exons'] = exons # Store exon data
|
342 |
+
|
343 |
+
# Notify the user once the process is completed successfully.
|
344 |
+
st.success('Prediction completed!')
|
345 |
+
st.session_state['prediction_made'] = True
|
346 |
+
|
347 |
+
if 'on_target_results' in st.session_state and st.session_state['on_target_results']:
|
348 |
+
ensembl_id = gene_annotations.get(gene_symbol, 'Unknown') # Get Ensembl ID or default to 'Unknown'
|
349 |
+
col1, col2, col3 = st.columns(3)
|
350 |
+
with col1:
|
351 |
+
st.markdown("**Genome**")
|
352 |
+
st.markdown("Homo sapiens")
|
353 |
+
with col2:
|
354 |
+
st.markdown("**Gene**")
|
355 |
+
st.markdown(f"{gene_symbol} : {ensembl_id} (primary)")
|
356 |
+
with col3:
|
357 |
+
st.markdown("**Nuclease**")
|
358 |
+
st.markdown("SpCas9")
|
359 |
+
# Include "Target" in the DataFrame's columns
|
360 |
+
try:
|
361 |
+
df = pd.DataFrame(st.session_state['on_target_results'],
|
362 |
+
columns=["Gene Symbol", "Chr", "Strand", "Target Start", "Transcript", "Exon",
|
363 |
+
"Target",
|
364 |
+
"gRNA", "Prediction", "Is Mutation"])
|
365 |
+
df_full = pd.DataFrame(st.session_state['full_results'],
|
366 |
+
columns=["Gene Symbol", "Chr", "Strand", "Target Start", "Transcript",
|
367 |
+
"Exon", "Target",
|
368 |
+
"gRNA", "Prediction", "Is Mutation"])
|
369 |
+
st.dataframe(df)
|
370 |
+
except ValueError as e:
|
371 |
+
st.error(f"DataFrame creation error: {e}")
|
372 |
+
# Optionally print or log the problematic data for debugging:
|
373 |
+
print(st.session_state['on_target_results'])
|
374 |
+
|
375 |
+
if 'gene_sequence' in st.session_state and st.session_state['gene_sequence']:
|
376 |
+
gene_symbol = st.session_state['current_gene_symbol']
|
377 |
+
gene_sequence = st.session_state['gene_sequence']
|
378 |
+
|
379 |
+
# Define file paths
|
380 |
+
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
|
381 |
+
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
|
382 |
+
csv_file_path = f"{gene_symbol}_crispr_predictions.csv"
|
383 |
+
plot_image_path = f"{gene_symbol}_gtracks_plot.png"
|
384 |
+
|
385 |
+
# Generate files
|
386 |
+
cas9att.generate_genbank_file_from_df(df_full, gene_sequence, gene_symbol, genbank_file_path)
|
387 |
+
cas9att.create_bed_file_from_df(df_full, bed_file_path)
|
388 |
+
cas9att.create_csv_from_df(df_full, csv_file_path)
|
389 |
+
|
390 |
+
# Prepare an in-memory buffer for the ZIP file
|
391 |
+
zip_buffer = io.BytesIO()
|
392 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
393 |
+
# For each file, add it to the ZIP file
|
394 |
+
zip_file.write(genbank_file_path)
|
395 |
+
zip_file.write(bed_file_path)
|
396 |
+
zip_file.write(csv_file_path)
|
397 |
+
|
398 |
+
# Display the download button for the ZIP file
|
399 |
+
st.download_button(
|
400 |
+
label="Download GenBank, BED, CSV files as ZIP",
|
401 |
+
data=zip_buffer.getvalue(),
|
402 |
+
file_name=f"{gene_symbol}_files.zip",
|
403 |
+
mime="application/zip"
|
404 |
+
)
|
405 |
+
|
406 |
+
elif target_selection == 'off-target':
|
407 |
+
ENTRY_METHODS = dict(
|
408 |
+
manual='Manual entry of target sequence',
|
409 |
+
txt="txt file upload"
|
410 |
+
)
|
411 |
+
if __name__ == '__main__':
|
412 |
+
# app initialization for Cas9 off-target
|
413 |
+
if 'target_sequence' not in st.session_state:
|
414 |
+
st.session_state.target_sequence = None
|
415 |
+
if 'input_error' not in st.session_state:
|
416 |
+
st.session_state.input_error = None
|
417 |
+
if 'off_target_results' not in st.session_state:
|
418 |
+
st.session_state.off_target_results = None
|
419 |
+
|
420 |
+
# target sequence entry
|
421 |
+
st.selectbox(
|
422 |
+
label='How would you like to provide target sequences?',
|
423 |
+
options=ENTRY_METHODS.values(),
|
424 |
+
key='entry_method',
|
425 |
+
disabled=st.session_state.target_sequence is not None
|
426 |
+
)
|
427 |
+
if st.session_state.entry_method == ENTRY_METHODS['manual']:
|
428 |
+
st.text_input(
|
429 |
+
label='Enter on/off sequences:',
|
430 |
+
key='manual_entry',
|
431 |
+
placeholder='Enter on/off sequences like:GGGTGGGGGGAGTTTGCTCCAGG,AGGTGGGGTGA_TTTGCTCCAGG',
|
432 |
+
disabled=st.session_state.target_sequence is not None
|
433 |
+
)
|
434 |
+
elif st.session_state.entry_method == ENTRY_METHODS['txt']:
|
435 |
+
st.file_uploader(
|
436 |
+
label='Upload a txt file:',
|
437 |
+
key='txt_entry',
|
438 |
+
disabled=st.session_state.target_sequence is not None
|
439 |
+
)
|
440 |
+
|
441 |
+
# prediction button
|
442 |
+
if st.button('Predict off-target'):
|
443 |
+
if st.session_state.entry_method == ENTRY_METHODS['manual']:
|
444 |
+
user_input = st.session_state.manual_entry
|
445 |
+
if user_input: # Check if user_input is not empty
|
446 |
+
predictions = cas9off.process_input_and_predict(user_input, input_type='manual')
|
447 |
+
elif st.session_state.entry_method == ENTRY_METHODS['txt']:
|
448 |
+
uploaded_file = st.session_state.txt_entry
|
449 |
+
if uploaded_file is not None:
|
450 |
+
# Read the uploaded file content
|
451 |
+
file_content = uploaded_file.getvalue().decode("utf-8")
|
452 |
+
predictions = cas9off.process_input_and_predict(file_content, input_type='manual')
|
453 |
+
|
454 |
+
st.session_state.off_target_results = predictions
|
455 |
+
else:
|
456 |
+
predictions = None
|
457 |
+
progress = st.empty()
|
458 |
+
|
459 |
+
# input error display
|
460 |
+
error = st.empty()
|
461 |
+
if st.session_state.input_error is not None:
|
462 |
+
error.error(st.session_state.input_error, icon="🚨")
|
463 |
+
else:
|
464 |
+
error.empty()
|
465 |
+
|
466 |
+
# off-target results display
|
467 |
+
off_target_results = st.empty()
|
468 |
+
if st.session_state.off_target_results is not None:
|
469 |
+
with off_target_results.container():
|
470 |
+
if len(st.session_state.off_target_results) > 0:
|
471 |
+
st.write('Off-target predictions:', st.session_state.off_target_results)
|
472 |
+
st.download_button(
|
473 |
+
label='Download off-target predictions',
|
474 |
+
data=convert_df(st.session_state.off_target_results),
|
475 |
+
file_name='off_target_results.csv',
|
476 |
+
mime='text/csv'
|
477 |
+
)
|
478 |
+
else:
|
479 |
+
st.write('No significant off-target effects detected!')
|
480 |
+
else:
|
481 |
+
off_target_results.empty()
|
482 |
+
|
483 |
+
# running the CRISPR-Net model for off-target predictions
|
484 |
+
if st.session_state.target_sequence is not None:
|
485 |
+
st.session_state.off_target_results = cas9off.predict_off_targets(
|
486 |
+
target_sequence=st.session_state.target_sequence,
|
487 |
+
status_update_fn=progress_update
|
488 |
+
)
|
489 |
+
st.session_state.target_sequence = None
|
490 |
+
st.experimental_rerun()
|
491 |
+
|
492 |
+
elif selected_model == 'Cas12':
|
493 |
+
def visualize_genomic_data():
|
494 |
+
fig = go.Figure()
|
495 |
+
|
496 |
+
EXON_BASE = 0 # Base position for exons and CDS on the Y axis
|
497 |
+
EXON_HEIGHT = 0.02 # How 'tall' the exon markers should appear
|
498 |
+
|
499 |
+
# Plot Exons as small markers on the X-axis
|
500 |
+
for exon in st.session_state['exons']:
|
501 |
+
try:
|
502 |
+
exon_start, exon_end = int(exon['start']), int(exon['end'])
|
503 |
+
fig.add_trace(go.Bar(
|
504 |
+
x=[(exon_start + exon_end) / 2],
|
505 |
+
y=[EXON_HEIGHT],
|
506 |
+
width=[exon_end - exon_start],
|
507 |
+
base=EXON_BASE,
|
508 |
+
marker_color='rgba(128, 0, 128, 0.5)',
|
509 |
+
name='Exon'
|
510 |
+
))
|
511 |
+
except ValueError:
|
512 |
+
st.error("Error in exon positions. Exon positions should be numeric.")
|
513 |
+
|
514 |
+
VERTICAL_GAP = 0.2 # Gap between different ranks
|
515 |
+
|
516 |
+
# Define max and min Y values based on strand and rank
|
517 |
+
MAX_STRAND_Y = 0.1 # Maximum Y value for positive strand results
|
518 |
+
MIN_STRAND_Y = -0.1 # Minimum Y value for negative strand results
|
519 |
+
|
520 |
+
# Iterate over top 5 sorted predictions to create the plot
|
521 |
+
for i, prediction in enumerate(st.session_state['on_target_results'][:5], start=1): # Only top 5
|
522 |
+
try:
|
523 |
+
start, end = int(prediction['Start Pos']), int(prediction['End Pos'])
|
524 |
+
midpoint = (start + end) / 2
|
525 |
+
strand = prediction['Strand']
|
526 |
+
y_value = (MAX_STRAND_Y - (i - 1) * VERTICAL_GAP) if strand in ['1', '+'] else (
|
527 |
+
MIN_STRAND_Y + (i - 1) * VERTICAL_GAP)
|
528 |
+
|
529 |
+
fig.add_trace(go.Scatter(
|
530 |
+
x=[midpoint],
|
531 |
+
y=[y_value],
|
532 |
+
mode='markers+text',
|
533 |
+
marker=dict(symbol='triangle-up' if strand in ['1', '+'] else 'triangle-down', size=12),
|
534 |
+
text=f"Rank: {i}",
|
535 |
+
hoverinfo='text',
|
536 |
+
hovertext=f"Rank: {i}<br>Chromosome: {prediction['Chr']}<br>Target Sequence: {prediction['Target']}<br>gRNA: {prediction['gRNA']}<br>Start: {start}<br>End: {end}<br>Strand: {'+' if strand in ['1', '+'] else '-'}<br>Transcript: {prediction['Transcript']}<br>Prediction: {prediction['Prediction']:.4f}",
|
537 |
+
))
|
538 |
+
except ValueError:
|
539 |
+
st.error("Error in prediction positions. Start and end positions should be numeric.")
|
540 |
+
|
541 |
+
# Update layout for clarity and interaction
|
542 |
+
fig.update_layout(
|
543 |
+
title='Top 5 gRNA Sequences by Prediction Score',
|
544 |
+
xaxis_title='Genomic Position',
|
545 |
+
yaxis_title='Strand',
|
546 |
+
yaxis=dict(tickvals=[MAX_STRAND_Y, MIN_STRAND_Y], ticktext=['+', '-']),
|
547 |
+
showlegend=False,
|
548 |
+
hovermode='x unified',
|
549 |
+
)
|
550 |
+
|
551 |
+
# Display the plot
|
552 |
+
st.plotly_chart(fig)
|
553 |
+
|
554 |
+
# File generation and download
|
555 |
+
generate_and_download_files(df, gene_symbol)
|
556 |
+
|
557 |
+
|
558 |
+
def generate_and_download_files(df, gene_symbol):
|
559 |
+
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
|
560 |
+
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
|
561 |
+
csv_file_path = f"{gene_symbol}_crispr_predictions.csv"
|
562 |
+
df.to_csv(csv_file_path, index=False)
|
563 |
+
# Assume functions to generate GenBank and BED are defined in cas12lstm or cas12lstmvcf
|
564 |
+
cas12lstm.generate_genbank_file_from_df(df, gene_symbol, genbank_file_path)
|
565 |
+
cas12lstm.create_bed_file_from_df(df, bed_file_path)
|
566 |
+
|
567 |
+
zip_buffer = io.BytesIO()
|
568 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
569 |
+
zip_file.write(genbank_file_path)
|
570 |
+
zip_file.write(bed_file_path)
|
571 |
+
zip_file.write(csv_file_path)
|
572 |
+
zip_buffer.seek(0)
|
573 |
+
st.download_button("Download GenBank, BED, CSV files as ZIP", data=zip_buffer.getvalue(),
|
574 |
+
file_name=f"{gene_symbol}_files.zip", mime="application/zip")
|
575 |
+
|
576 |
+
|
577 |
+
def display_results(predictions, gene_sequence, exons, gene_symbol):
|
578 |
+
st.success('Prediction completed!')
|
579 |
+
ensembl_id = gene_annotations.get(gene_symbol, 'Unknown')
|
580 |
+
st.write(f"**Genome:** Homo sapiens")
|
581 |
+
st.write(f"**Gene:** {gene_symbol} : {ensembl_id} (primary)")
|
582 |
+
st.write("**Nuclease:** Cas12")
|
583 |
+
df = pd.DataFrame(predictions,
|
584 |
+
columns=["Chr", "Start Pos", "End Pos", "Strand", "Transcript", "Exon", "Target", "gRNA",
|
585 |
+
"Prediction"])
|
586 |
+
st.dataframe(df)
|
587 |
+
|
588 |
+
# Visualization and file generation as demonstrated in the Cas9 example
|
589 |
+
visualize_and_generate_files(df, gene_sequence, exons, gene_symbol)
|
590 |
+
|
591 |
+
|
592 |
+
cas12target_selection = st.radio(
|
593 |
+
"Select either regular or mutation:",
|
594 |
+
('regular', 'mutation'),
|
595 |
+
key='cas12target_selection'
|
596 |
+
)
|
597 |
+
if 'current_gene_symbol' not in st.session_state:
|
598 |
+
st.session_state['current_gene_symbol'] = ""
|
599 |
+
|
600 |
+
def clean_up_old_files(gene_symbol):
|
601 |
+
for suffix in ['_crispr_targets.gb', '_crispr_targets.bed', '_crispr_predictions.csv']:
|
602 |
+
file_path = f"{gene_symbol}{suffix}"
|
603 |
+
if os.path.exists(file_path):
|
604 |
+
os.remove(file_path)
|
605 |
+
|
606 |
+
gene_symbol = st.selectbox(
|
607 |
+
'Enter a Gene Symbol:',
|
608 |
+
[''] + gene_symbol_list,
|
609 |
+
key='gene_symbol',
|
610 |
+
format_func=lambda x: x if x else ""
|
611 |
+
)
|
612 |
+
|
613 |
+
if gene_symbol != st.session_state['current_gene_symbol']:
|
614 |
+
if st.session_state['current_gene_symbol']:
|
615 |
+
clean_up_old_files(st.session_state['current_gene_symbol'])
|
616 |
+
st.session_state['current_gene_symbol'] = gene_symbol
|
617 |
+
|
618 |
+
if cas12target_selection == 'regular':
|
619 |
+
if st.button('Predict cas12 Regular'):
|
620 |
+
with st.spinner('Predicting... Please wait'):
|
621 |
+
predictions, gene_sequence, exons = cas12lstm.process_gene(gene_symbol, cas12lstm_path)
|
622 |
+
sorted_predictions = sorted(predictions, key=lambda x: x[8], reverse=True)[:10]
|
623 |
+
display_results(sorted_predictions, gene_sequence, exons, gene_symbol)
|
624 |
+
elif cas12target_selection == 'mutation':
|
625 |
+
vcf_reader = cyvcf2.VCF('SRR25934512.filter.snps.indels.vcf.gz')
|
626 |
+
if st.button('Predict cas12 Mutation'):
|
627 |
+
with st.spinner('Predicting... Please wait'):
|
628 |
+
predictions, gene_sequence, exons = cas12lstmvcf.process_gene(gene_symbol, vcf_reader, cas12lstm_path)
|
629 |
+
sorted_predictions = sorted(predictions, key=lambda x: x[8], reverse=True)[:10]
|
630 |
+
display_results(sorted_predictions, gene_sequence, exons, gene_symbol)
|
631 |
+
|
632 |
+
elif selected_model == 'Cas13d':
|
633 |
+
ENTRY_METHODS = dict(
|
634 |
+
manual='Manual entry of single transcript',
|
635 |
+
fasta="Fasta file upload (supports multiple transcripts if they have unique ID's)"
|
636 |
+
)
|
637 |
+
|
638 |
+
if __name__ == '__main__':
|
639 |
+
# app initialization
|
640 |
+
if 'mode' not in st.session_state:
|
641 |
+
st.session_state.mode = tiger.RUN_MODES['all']
|
642 |
+
st.session_state.disable_off_target_checkbox = True
|
643 |
+
if 'entry_method' not in st.session_state:
|
644 |
+
st.session_state.entry_method = ENTRY_METHODS['manual']
|
645 |
+
if 'transcripts' not in st.session_state:
|
646 |
+
st.session_state.transcripts = None
|
647 |
+
if 'input_error' not in st.session_state:
|
648 |
+
st.session_state.input_error = None
|
649 |
+
if 'on_target' not in st.session_state:
|
650 |
+
st.session_state.on_target = None
|
651 |
+
if 'titration' not in st.session_state:
|
652 |
+
st.session_state.titration = None
|
653 |
+
if 'off_target' not in st.session_state:
|
654 |
+
st.session_state.off_target = None
|
655 |
+
|
656 |
+
# mode selection
|
657 |
+
col1, col2 = st.columns([0.65, 0.35])
|
658 |
+
with col1:
|
659 |
+
st.radio(
|
660 |
+
label='What do you want to predict?',
|
661 |
+
options=tuple(tiger.RUN_MODES.values()),
|
662 |
+
key='mode',
|
663 |
+
on_change=mode_change_callback,
|
664 |
+
disabled=st.session_state.transcripts is not None,
|
665 |
+
)
|
666 |
+
with col2:
|
667 |
+
st.checkbox(
|
668 |
+
label='Find off-target effects (slow)',
|
669 |
+
key='check_off_targets',
|
670 |
+
disabled=st.session_state.disable_off_target_checkbox or st.session_state.transcripts is not None
|
671 |
+
)
|
672 |
+
|
673 |
+
# transcript entry
|
674 |
+
st.selectbox(
|
675 |
+
label='How would you like to provide transcript(s) of interest?',
|
676 |
+
options=ENTRY_METHODS.values(),
|
677 |
+
key='entry_method',
|
678 |
+
disabled=st.session_state.transcripts is not None
|
679 |
+
)
|
680 |
+
if st.session_state.entry_method == ENTRY_METHODS['manual']:
|
681 |
+
st.text_input(
|
682 |
+
label='Enter a target transcript:',
|
683 |
+
key='manual_entry',
|
684 |
+
placeholder='Upper or lower case',
|
685 |
+
disabled=st.session_state.transcripts is not None
|
686 |
+
)
|
687 |
+
elif st.session_state.entry_method == ENTRY_METHODS['fasta']:
|
688 |
+
st.file_uploader(
|
689 |
+
label='Upload a fasta file:',
|
690 |
+
key='fasta_entry',
|
691 |
+
disabled=st.session_state.transcripts is not None
|
692 |
+
)
|
693 |
+
|
694 |
+
# let's go!
|
695 |
+
st.button(label='Get predictions!', on_click=initiate_run, disabled=st.session_state.transcripts is not None)
|
696 |
+
progress = st.empty()
|
697 |
+
|
698 |
+
# input error
|
699 |
+
error = st.empty()
|
700 |
+
if st.session_state.input_error is not None:
|
701 |
+
error.error(st.session_state.input_error, icon="🚨")
|
702 |
+
else:
|
703 |
+
error.empty()
|
704 |
+
|
705 |
+
# on-target results
|
706 |
+
on_target_results = st.empty()
|
707 |
+
if st.session_state.on_target is not None:
|
708 |
+
with on_target_results.container():
|
709 |
+
st.write('On-target predictions:', st.session_state.on_target)
|
710 |
+
st.download_button(
|
711 |
+
label='Download on-target predictions',
|
712 |
+
data=convert_df(st.session_state.on_target),
|
713 |
+
file_name='on_target.csv',
|
714 |
+
mime='text/csv'
|
715 |
+
)
|
716 |
+
else:
|
717 |
+
on_target_results.empty()
|
718 |
+
|
719 |
+
# titration results
|
720 |
+
titration_results = st.empty()
|
721 |
+
if st.session_state.titration is not None:
|
722 |
+
with titration_results.container():
|
723 |
+
st.write('Titration predictions:', st.session_state.titration)
|
724 |
+
st.download_button(
|
725 |
+
label='Download titration predictions',
|
726 |
+
data=convert_df(st.session_state.titration),
|
727 |
+
file_name='titration.csv',
|
728 |
+
mime='text/csv'
|
729 |
+
)
|
730 |
+
else:
|
731 |
+
titration_results.empty()
|
732 |
+
|
733 |
+
# off-target results
|
734 |
+
off_target_results = st.empty()
|
735 |
+
if st.session_state.off_target is not None:
|
736 |
+
with off_target_results.container():
|
737 |
+
if len(st.session_state.off_target) > 0:
|
738 |
+
st.write('Off-target predictions:', st.session_state.off_target)
|
739 |
+
st.download_button(
|
740 |
+
label='Download off-target predictions',
|
741 |
+
data=convert_df(st.session_state.off_target),
|
742 |
+
file_name='off_target.csv',
|
743 |
+
mime='text/csv'
|
744 |
+
)
|
745 |
+
else:
|
746 |
+
st.write('We did not find any off-target effects!')
|
747 |
+
else:
|
748 |
+
off_target_results.empty()
|
749 |
+
|
750 |
+
# keep trying to run model until we clear inputs (streamlit UI changes can induce race-condition reruns)
|
751 |
+
if st.session_state.transcripts is not None:
|
752 |
+
st.session_state.on_target, st.session_state.titration, st.session_state.off_target = tiger.tiger_exhibit(
|
753 |
+
transcripts=st.session_state.transcripts,
|
754 |
+
mode={v: k for k, v in tiger.RUN_MODES.items()}[st.session_state.mode],
|
755 |
+
check_off_targets=st.session_state.check_off_targets,
|
756 |
+
status_update_fn=progress_update
|
757 |
+
)
|
758 |
+
st.session_state.transcripts = None
|
759 |
+
st.experimental_rerun()
|