Spaces:
Runtime error
Runtime error
fix: fixing for plotting and attention visualization
Browse files- backend/controller.py +44 -43
- explanation/attention.py +2 -2
- explanation/plotting.py +1 -3
- model/mistral.py +0 -1
- utils/formatting.py +10 -2
- utils/modelling.py +1 -1
backend/controller.py
CHANGED
@@ -14,8 +14,47 @@ from explanation import (
|
|
14 |
)
|
15 |
|
16 |
|
17 |
-
#
|
18 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def interference(
|
20 |
prompt: str,
|
21 |
history: list,
|
@@ -31,6 +70,7 @@ def interference(
|
|
31 |
Always answer as helpfully as possible, while being safe.
|
32 |
"""
|
33 |
|
|
|
34 |
if model_selection.lower() == "mistral":
|
35 |
model = mistral
|
36 |
print("Indentified model as Mistral")
|
@@ -39,6 +79,7 @@ def interference(
|
|
39 |
print("Indentified model as GODEL")
|
40 |
|
41 |
# if a XAI approach is selected, grab the XAI module instance
|
|
|
42 |
if xai_selection in ("SHAP", "Attention"):
|
43 |
# matching selection
|
44 |
match xai_selection.lower():
|
@@ -71,7 +112,7 @@ def interference(
|
|
71 |
)
|
72 |
# if no XAI approach is selected call the vanilla chat function
|
73 |
else:
|
74 |
-
#
|
75 |
prompt_output, history_output = vanilla_chat(
|
76 |
model=model,
|
77 |
message=prompt,
|
@@ -91,43 +132,3 @@ def interference(
|
|
91 |
|
92 |
# return the outputs
|
93 |
return prompt_output, history_output, xai_interactive, xai_markup, xai_plot
|
94 |
-
|
95 |
-
|
96 |
-
# simple chat function that calls the model
|
97 |
-
# formats prompts, calls for an answer and returns updated conversation history
|
98 |
-
def vanilla_chat(
|
99 |
-
model, message: str, history: list, system_prompt: str, knowledge: str = ""
|
100 |
-
):
|
101 |
-
print(f"Running normal chat with {model}.")
|
102 |
-
|
103 |
-
# formatting the prompt using the model's format_prompt function
|
104 |
-
prompt = model.format_prompt(message, history, system_prompt, knowledge)
|
105 |
-
|
106 |
-
# generating an answer using the model's respond function
|
107 |
-
answer = model.respond(prompt)
|
108 |
-
|
109 |
-
# updating the chat history with the new answer
|
110 |
-
history.append((message, answer))
|
111 |
-
# returning the updated history
|
112 |
-
return "", history
|
113 |
-
|
114 |
-
|
115 |
-
def explained_chat(
|
116 |
-
model, xai, message: str, history: list, system_prompt: str, knowledge: str = ""
|
117 |
-
):
|
118 |
-
print(f"Running explained chat with {xai} with {model}.")
|
119 |
-
|
120 |
-
# formatting the prompt using the model's format_prompt function
|
121 |
-
# message, history, system_prompt, knowledge = mdl.prompt_limiter(
|
122 |
-
# message, history, system_prompt, knowledge
|
123 |
-
# )
|
124 |
-
prompt = model.format_prompt(message, history, system_prompt, knowledge)
|
125 |
-
|
126 |
-
# generating an answer using the methods chat function
|
127 |
-
answer, xai_graphic, xai_markup, xai_plot = xai.chat_explained(model, prompt)
|
128 |
-
|
129 |
-
# updating the chat history with the new answer
|
130 |
-
history.append((message, answer))
|
131 |
-
|
132 |
-
# returning the updated history, xai graphic and xai plot elements
|
133 |
-
return "", history, xai_graphic, xai_markup, xai_plot
|
|
|
14 |
)
|
15 |
|
16 |
|
17 |
+
# simple chat function that calls the model
|
18 |
+
# formats prompts, calls for an answer and returns updated conversation history
|
19 |
+
def vanilla_chat(
|
20 |
+
model, message: str, history: list, system_prompt: str, knowledge: str = ""
|
21 |
+
):
|
22 |
+
print(f"Running normal chat with {model}.")
|
23 |
+
|
24 |
+
# formatting the prompt using the model's format_prompt function
|
25 |
+
prompt = model.format_prompt(message, history, system_prompt, knowledge)
|
26 |
+
|
27 |
+
# generating an answer using the model's respond function
|
28 |
+
answer = model.respond(prompt)
|
29 |
+
|
30 |
+
# updating the chat history with the new answer
|
31 |
+
history.append((message, answer))
|
32 |
+
# returning the updated history
|
33 |
+
return "", history
|
34 |
+
|
35 |
+
|
36 |
+
def explained_chat(
|
37 |
+
model, xai, message: str, history: list, system_prompt: str, knowledge: str = ""
|
38 |
+
):
|
39 |
+
print(f"Running explained chat with {xai} with {model}.")
|
40 |
+
|
41 |
+
# formatting the prompt using the model's format_prompt function
|
42 |
+
# message, history, system_prompt, knowledge = mdl.prompt_limiter(
|
43 |
+
# message, history, system_prompt, knowledge
|
44 |
+
# )
|
45 |
+
prompt = model.format_prompt(message, history, system_prompt, knowledge)
|
46 |
+
|
47 |
+
# generating an answer using the methods chat function
|
48 |
+
answer, xai_graphic, xai_markup, xai_plot = xai.chat_explained(model, prompt)
|
49 |
+
|
50 |
+
# updating the chat history with the new answer
|
51 |
+
history.append((message, answer))
|
52 |
+
|
53 |
+
# returning the updated history, xai graphic and xai plot elements
|
54 |
+
return "", history, xai_graphic, xai_markup, xai_plot
|
55 |
+
|
56 |
+
|
57 |
+
# main interference function that calls chat functions depending on selections
|
58 |
def interference(
|
59 |
prompt: str,
|
60 |
history: list,
|
|
|
70 |
Always answer as helpfully as possible, while being safe.
|
71 |
"""
|
72 |
|
73 |
+
# if a model is selected, grab the model instance
|
74 |
if model_selection.lower() == "mistral":
|
75 |
model = mistral
|
76 |
print("Indentified model as Mistral")
|
|
|
79 |
print("Indentified model as GODEL")
|
80 |
|
81 |
# if a XAI approach is selected, grab the XAI module instance
|
82 |
+
# and call the explained chat function
|
83 |
if xai_selection in ("SHAP", "Attention"):
|
84 |
# matching selection
|
85 |
match xai_selection.lower():
|
|
|
112 |
)
|
113 |
# if no XAI approach is selected call the vanilla chat function
|
114 |
else:
|
115 |
+
# calling the vanilla chat function
|
116 |
prompt_output, history_output = vanilla_chat(
|
117 |
model=model,
|
118 |
message=prompt,
|
|
|
132 |
|
133 |
# return the outputs
|
134 |
return prompt_output, history_output, xai_interactive, xai_markup, xai_plot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
explanation/attention.py
CHANGED
@@ -28,14 +28,14 @@ def chat_explained(model, prompt):
|
|
28 |
# checking if model is mistral
|
29 |
if type(model.MODEL) == type(mistral.MODEL):
|
30 |
|
31 |
-
# get attention values for the input vectors
|
32 |
attention_output = model.MODEL(input_ids, output_attentions=True).attentions
|
33 |
|
34 |
# averaging attention across layers and heads
|
35 |
attention_output = mdl.format_mistral_attention(attention_output)
|
36 |
averaged_attention = fmt.avg_attention(attention_output, model="mistral")
|
37 |
|
38 |
-
# attention visualization for godel
|
39 |
else:
|
40 |
# get attention values for the input and output vectors
|
41 |
# using already generated input and output
|
|
|
28 |
# checking if model is mistral
|
29 |
if type(model.MODEL) == type(mistral.MODEL):
|
30 |
|
31 |
+
# get attention values for the input vectors, specific to mistral
|
32 |
attention_output = model.MODEL(input_ids, output_attentions=True).attentions
|
33 |
|
34 |
# averaging attention across layers and heads
|
35 |
attention_output = mdl.format_mistral_attention(attention_output)
|
36 |
averaged_attention = fmt.avg_attention(attention_output, model="mistral")
|
37 |
|
38 |
+
# otherwise use attention visualization for godel
|
39 |
else:
|
40 |
# get attention values for the input and output vectors
|
41 |
# using already generated input and output
|
explanation/plotting.py
CHANGED
@@ -12,7 +12,6 @@ def plot_seq(seq_values: list, method: str = ""):
|
|
12 |
|
13 |
# Convert importance values to numpy array for conditional coloring
|
14 |
importance = np.array(importance)
|
15 |
-
importance = importance.log
|
16 |
|
17 |
# Determine the colors based on the sign of the importance values
|
18 |
colors = ["#ff0051" if val > 0 else "#008bfb" for val in importance]
|
@@ -22,9 +21,8 @@ def plot_seq(seq_values: list, method: str = ""):
|
|
22 |
x_positions = range(len(tokens)) # Positions for the bars
|
23 |
|
24 |
# Creating vertical bar plot
|
25 |
-
bar_width = 0.8
|
26 |
plt.bar(x_positions, importance, color=colors, align="center", width=bar_width)
|
27 |
-
plt.yscale("symlog")
|
28 |
|
29 |
# Annotating each bar with its value
|
30 |
padding = 0.1 # Padding for text annotation
|
|
|
12 |
|
13 |
# Convert importance values to numpy array for conditional coloring
|
14 |
importance = np.array(importance)
|
|
|
15 |
|
16 |
# Determine the colors based on the sign of the importance values
|
17 |
colors = ["#ff0051" if val > 0 else "#008bfb" for val in importance]
|
|
|
21 |
x_positions = range(len(tokens)) # Positions for the bars
|
22 |
|
23 |
# Creating vertical bar plot
|
24 |
+
bar_width = 0.8
|
25 |
plt.bar(x_positions, importance, color=colors, align="center", width=bar_width)
|
|
|
26 |
|
27 |
# Annotating each bar with its value
|
28 |
padding = 0.1 # Padding for text annotation
|
model/mistral.py
CHANGED
@@ -31,7 +31,6 @@ CONFIG = GenerationConfig.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
|
31 |
base_config_dict = {
|
32 |
"temperature": 0.7,
|
33 |
"max_new_tokens": 64,
|
34 |
-
"max_length": 64,
|
35 |
"top_p": 0.9,
|
36 |
"repetition_penalty": 1.2,
|
37 |
"do_sample": True,
|
|
|
31 |
base_config_dict = {
|
32 |
"temperature": 0.7,
|
33 |
"max_new_tokens": 64,
|
|
|
34 |
"top_p": 0.9,
|
35 |
"repetition_penalty": 1.2,
|
36 |
"do_sample": True,
|
utils/formatting.py
CHANGED
@@ -88,11 +88,19 @@ def flatten_attention(values: ndarray, axis: int = 0):
|
|
88 |
|
89 |
# function to get averaged decoder attention from attention values
|
90 |
def avg_attention(attention_values, model: str):
|
|
|
91 |
# check if model is godel
|
92 |
if model == "godel":
|
93 |
# get attention values for the input and output vectors
|
94 |
attention = attention_values.decoder_attentions[0][0].detach().numpy()
|
95 |
return np.mean(attention, axis=0)
|
|
|
96 |
# extracting attention values for mistral
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
# function to get averaged decoder attention from attention values
|
90 |
def avg_attention(attention_values, model: str):
|
91 |
+
|
92 |
# check if model is godel
|
93 |
if model == "godel":
|
94 |
# get attention values for the input and output vectors
|
95 |
attention = attention_values.decoder_attentions[0][0].detach().numpy()
|
96 |
return np.mean(attention, axis=0)
|
97 |
+
|
98 |
# extracting attention values for mistral
|
99 |
+
attention = attention_values.to(torch.device("cpu")).detach().numpy()
|
100 |
+
|
101 |
+
# removing the last dimension and transposing to get the correct shape
|
102 |
+
attention = attention[:, :, :, 0]
|
103 |
+
attention = attention.transpose
|
104 |
+
|
105 |
+
# return the averaged attention values
|
106 |
+
return np.mean(attention, axis=1)
|
utils/modelling.py
CHANGED
@@ -107,4 +107,4 @@ def format_mistral_attention(attention_values):
|
|
107 |
for layer_attention in attention_values:
|
108 |
layer_attention = layer_attention.squeeze(0)
|
109 |
squeezed.append(layer_attention)
|
110 |
-
return torch.stack(squeezed)
|
|
|
107 |
for layer_attention in attention_values:
|
108 |
layer_attention = layer_attention.squeeze(0)
|
109 |
squeezed.append(layer_attention)
|
110 |
+
return torch.stack(squeezed).to(torch.device("cpu"))
|