wan-fusionx-lora / app_lora.py
Lemonator's picture
Update app_lora.py
1f619e0 verified
raw
history blame
9.97 kB
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import os
import subprocess
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import warnings
warnings.filterwarnings("ignore", message=".*Attempting to use legacy OpenCV backend.*")
warnings.filterwarnings("ignore", message=".*num_frames - 1.*")
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"
# Global variable to hold the pipeline. It's initialized to None.
pipe = None
def initialize_pipeline():
"""
Initializes the model pipeline on the first request.
This function is designed for serverless GPU environments like ZeroGPU.
"""
global pipe
# The 'pipe' global variable acts as a flag. If it's not None, we've already initialized.
if pipe is None:
print("First time setup: Initializing model pipeline...")
gr.Info("Cold start: The first generation will take longer as the model is loaded.")
if not torch.cuda.is_available():
raise gr.Error("GPU not available. This application requires a GPU to run.")
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float16)
# All model loading happens here, when a GPU is guaranteed to be active.
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.enable_model_cpu_offload()
try:
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
print("βœ… LoRA downloaded to:", causvid_path)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.75])
pipe.fuse_lora()
except Exception as e:
raise gr.Error(f"Error loading LoRA: {e}")
print("βœ… Pipeline initialized successfully.")
# --- Constants and Helper Functions ---
# (These are unchanged)
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE = 640, 1024
NEW_FORMULA_MAX_AREA = 640.0 * 1024.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS, MIN_FRAMES_MODEL, MAX_FRAMES_MODEL = 24, 8, 240
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h, min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0: return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image):
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error calculating new dimensions.")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def export_video_with_ffmpeg(frames, output_path, fps=24):
try:
import imageio
writer = imageio.get_writer(output_path, fps=fps, codec='libx264',
pixelformat='yuv420p', quality=8)
for frame in frames:
writer.append_data(np.array(frame))
writer.close()
except ImportError:
export_to_video(frames, output_path, fps=fps)
def generate_video(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps, seed, randomize_seed,
progress=gr.Progress(track_tqdm=True)):
# --- LAZY LOADING TRIGGER ---
# This will load the model on the first run, and do nothing on subsequent runs.
initialize_pipeline()
if input_image is None:
raise gr.Error("Please upload an input image.")
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
raw_frames = int(round(duration_seconds * FIXED_FPS))
num_frames = ((raw_frames - 1) // 4) * 4 + 1
num_frames = np.clip(num_frames, MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
if num_frames > 120 and max(target_h, target_w) > 768:
scale_factor = 768 / max(target_h, target_w)
target_h = max(MOD_VALUE, int(target_h * scale_factor) // MOD_VALUE * MOD_VALUE)
target_w = max(MOD_VALUE, int(target_w * scale_factor) // MOD_VALUE * MOD_VALUE)
gr.Info(f"Reduced resolution to {target_w}x{target_h} for long video.")
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
try:
torch.cuda.empty_cache()
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16):
output_frames_list = pipe(
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
except torch.cuda.OutOfMemoryError:
raise gr.Error("Out of GPU memory. Try reducing duration or resolution.")
finally:
torch.cuda.empty_cache()
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_video_with_ffmpeg(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Wan 2.1 I2V FusionX-LoRA (ZeroGPU Ready)")
gr.Markdown("The first generation will be slow due to a 'cold start'. Subsequent generations will be much faster.")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image")
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1), step=0.1, value=2, label="Duration (seconds)")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label="Height")
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label="Width")
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
gr.Markdown("### Tips:\n- Longer videos need more memory.\n- 4-8 steps is optimal.")
input_image_component.upload(fn=handle_image_upload_for_dims_wan, inputs=input_image_component, outputs=[height_input, width_input])
ui_inputs = [input_image_component, prompt_input, height_input, width_input, negative_prompt_input, duration_seconds_input, guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
if __name__ == "__main__":
# We launch the demo unconditionally now. The GPU check is deferred until the first click.
demo.queue(max_size=3).launch()