Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
asr = pipeline(task="automatic-speech-recognition", model="openai/whisper-base") | |
def get_text_from_audio(audio): | |
output = asr(audio, max_new_tokens=256,chunk_length_s=30,batch_size=8) | |
return output['text'] | |
from transformers import MarianMTModel, MarianTokenizer | |
# Загрузка модели и токенизатора для перевода с русского на английский | |
tr_ru_model_name = "Helsinki-NLP/opus-mt-ru-en" | |
tr_ru_tokenizer = MarianTokenizer.from_pretrained(tr_ru_model_name) | |
tr_ru_model = MarianMTModel.from_pretrained(tr_ru_model_name) | |
# Функция для перевода текста | |
def translate_ru_to_en(text): | |
# Токенизация входного текста | |
tokenized_text = tr_ru_tokenizer.prepare_seq2seq_batch([text], return_tensors="pt") | |
# Перевод текста | |
translated = tr_ru_model.generate(**tokenized_text) | |
# Декодирование переведенного текста | |
translated_text = tr_ru_tokenizer.decode(translated[0], skip_special_tokens=True) | |
return translated_text | |
import requests | |
from PIL import Image | |
сurrent_images = [] | |
def load_image(image_url): | |
image = Image.open(requests.get(image_url, stream=True).raw) | |
if сurrent_images: | |
сurrent_images.pop(0) | |
сurrent_images.append(image) | |
return image | |
from transformers import ViltProcessor, ViltForQuestionAnswering | |
# Загрузка процессора и модели VQA | |
img_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
img_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
# Функция для получения ответа на вопрос по изображению | |
def ask_question_about_image(question): | |
# Подготовка входных данных для модели | |
encoding = img_processor(сurrent_images[0], text=question, return_tensors="pt") | |
# Получение ответа от модели | |
outputs = img_model(**encoding) | |
logits = outputs.logits | |
idx = logits.argmax(-1).item() | |
# Декодирование ответа | |
answer = img_model.config.id2label[idx] | |
return answer | |
from transformers import MarianMTModel, MarianTokenizer | |
# Загрузка модели и токенизатора для перевода с русского на английский | |
tr_en_model_name = "Helsinki-NLP/opus-mt-en-ru" | |
tr_en_tokenizer = MarianTokenizer.from_pretrained(tr_en_model_name) | |
tr_en_model = MarianMTModel.from_pretrained(tr_en_model_name) | |
# Функция для перевода текста | |
def translate_en_to_ru(text): | |
# Токенизация входного текста | |
tokenized_text = tr_en_tokenizer.prepare_seq2seq_batch([text], return_tensors="pt") | |
# Перевод текста | |
translated = tr_en_model.generate(**tokenized_text) | |
# Декодирование переведенного текста | |
translated_text = tr_en_tokenizer.decode(translated[0], skip_special_tokens=True) | |
return translated_text | |
from transformers import pipeline | |
import torch | |
import io | |
import soundfile as sf | |
import numpy as np | |
# Загружаем TTS-модель для русского языка | |
tts_pipe = pipeline("text-to-speech", model="facebook/mms-tts-rus") | |
def text_to_speech(text, output_file="output.wav"): | |
output = tts_pipe(text) | |
print(output) | |
sf.write(output_file, output['audio'][0], samplerate=output['sampling_rate']) | |
return output_file | |
def transcribe_long_form(filepath): | |
if filepath is None: | |
gr.Warning("No audio found, please retry.") | |
return | |
ru_text = get_text_from_audio(filepath) | |
eng_text = translate_ru_to_en(ru_text) | |
answer = ask_question_about_image(eng_text) | |
ru_text_ans = translate_en_to_ru(answer) | |
speech_filename = text_to_speech(ru_text_ans) | |
return speech_filename | |
import os | |
import gradio as gr | |
import gradio as gr | |
demo = gr.Blocks() | |
mic_transcribe = gr.Interface( | |
fn=transcribe_long_form, | |
inputs=gr.Audio(sources="microphone", | |
type="filepath"), | |
outputs="audio", | |
allow_flagging="never") | |
file_load = gr.Interface( | |
fn=load_image, | |
inputs="text", | |
outputs="image", | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface( | |
[mic_transcribe, | |
file_load], | |
["Transcribe Microphone", | |
"Transcribe Audio File"], | |
) | |
demo.launch(share=True) |