Spaces:
Build error
Build error
LayBraid
commited on
Commit
·
744fb8a
1
Parent(s):
5b62fe7
test app
Browse files
app.py
CHANGED
|
@@ -1,10 +1,45 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
if __name__ == "__main__":
|
| 10 |
-
gr.Interface(fn=send_inputs, inputs=["
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import clip
|
| 4 |
+
import torch
|
| 5 |
+
from torchvision import transforms
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from torchvision.datasets import CIFAR100
|
| 8 |
|
| 9 |
+
model, preprocess = clip.load('ViT-B/32', "cpu")
|
| 10 |
|
| 11 |
+
|
| 12 |
+
cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
IMG_SIZE = 32 if torch.cuda.is_available() else 32
|
| 16 |
+
COMPOSED_TRANSFORMERS = transforms.Compose([
|
| 17 |
+
transforms.Resize(IMG_SIZE),
|
| 18 |
+
transforms.ToTensor(),
|
| 19 |
+
])
|
| 20 |
+
|
| 21 |
+
NORMALIZE_TENSOR = transforms.Normalize(
|
| 22 |
+
mean=[0.485, 0.456, 0.406],
|
| 23 |
+
std=[0.229, 0.224, 0.225]
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def np_array_to_tensor_image(img, width=IMG_SIZE, height=IMG_SIZE, device='cpu'):
|
| 28 |
+
image = Image.fromarray(img).convert('RGB').resize((width, height))
|
| 29 |
+
image = COMPOSED_TRANSFORMERS(image).unsqueeze(0)
|
| 30 |
+
return image.to(device, torch.float)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def normalize_tensor(tensor: torch.tensor) -> torch.tensor:
|
| 34 |
+
return NORMALIZE_TENSOR(tensor)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def send_inputs(img):
|
| 38 |
+
img = np_array_to_tensor_image(img)
|
| 39 |
+
img = normalize_tensor(img)
|
| 40 |
+
result = model(img)
|
| 41 |
+
return result
|
| 42 |
|
| 43 |
|
| 44 |
if __name__ == "__main__":
|
| 45 |
+
gr.Interface(fn=send_inputs, inputs=["image"], outputs="text").launch()
|